887 resultados para constrained neural networks


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conferência: CONTROLO’2012 - 16-18 July 2012 - Funchal

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a novel hybrid approach is proposed for electricity prices forecasting in a competitive market, considering a time horizon of 1 week. The proposed approach is based on the combination of particle swarm optimization and adaptive-network based fuzzy inference system. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications, to demonstrate its effectiveness regarding forecasting accuracy and computation time. Finally, conclusions are duly drawn.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Computação e Instrumentação Médica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho pretende-se introduzir os conceitos associados às redes neuronais e a sua aplicação no controlo de sistemas, neste caso na área da robótica autónoma. Foi utilizado um AGV de modo a testar experimentalmente um controlo através de uma rede neuronal artificial. A grande vantagem das redes neuronais artificiais é estas poderem ser ensinadas a funcionarem como se pretende. A partir desta caraterística foram efetuadas duas abordagens na implementação do AGV disponibilizado. A primeira abordagem ensinava a rede neuronal a funcionar como o controlo por lógica difusa que foi implementado no AGV aquando do seu desenvolvimento. A segunda abordagem foi ensinar a rede neuronal artificial a funcionar a partir de dados retirados de um controlo remoto simples implementado no AGV. Ambas as abordagens foram inicialmente implementadas e simuladas no MATLAB, antes de se efetuar a sua implementação no AGV. O MATLAB é utilizado para efetuar o treino das redes neuronais multicamada proactivas através do algoritmo de treino por retropropagação de Levenberg-Marquardt. A implementação de uma rede neuronal artificial na primeira abordagem foi implementada em três fases, MATLAB, posteriormente linguagem de programação C no computador e por fim, microcontrolador PIC no AGV, permitindo assim diferenciar o desenvolvimento destas técnicas em várias plataformas. Durante o desenvolvimento da segunda abordagem foi desenvolvido uma aplicação Android que permite monitorizar e controlar o AGV remotamente. Os resultados obtidos pela implementação da rede neuronal a partir do controlo difuso e do controlo remoto foram satisfatórios, pois o AGV percorria os percursos testados corretamente, em ambos os casos. Por fim concluiu-se que é viável a aplicação das redes neuronais no controlo de um AGV. Mais ainda, é possível utilizar o sistema desenvolvido para implementar e testar novas RNA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numa Estação de Tratamento de Águas Residuais (ETAR), a otimização do processo de Digestão Anaeróbia (DA) é fundamental para o aumento da produção de biogás, que por sua vez é convertido em energia, essencial para a rentabilidade de exploração de ETAR. No entanto, a complexidade do processo de Digestão Anaeróbia das lamas constitui um obstáculo à sua otimização. Com este trabalho pretende-se efetuar a análise e tratamento de dados de Digestão Anaeróbia, com recurso a Redes Neuronais Artificiais (RNA), contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás. As Redes Neuronais Artificiais são modelos matemáticos computacionais inspirados no funcionamento do cérebro humano, com capacidade para entender relações complexas num determinado conjunto de dados, motivo por que se optou pela sua utilização na procura de soluções que permitem predizer o comportamento de uma DA. Para o desenvolvimento das RNA utilizou-se o programa NeuralToolsTM da PalisadeTM. Como caso de estudo, a metodologia foi aplicada ao Digestor A da ETAR Sul da SIMRIA, empresa onde teve lugar o estágio curricular que originou o presente trabalho. Nesse contexto, utilizaram-se dados com informação referente aos últimos dois anos de funcionamento do digestor, disponíveis na empresa. Apesar de se terem verificado certas limitações, na predição em alguns casos particulares, de um modo geral, considera-se que os resultados obtidos permitiram concluir que as redes neuronais modeladas apresentam boa capacidade de generalização na imitação do processo anaeróbio. Conclui-se, portanto, que o estudo realizado pode constituir um contributo com interesse para a otimização da produção do biogás na DA de ETAR Sul da SIMRIA e que a utilização de RNA poderá ser uma ferramenta a explorar, quer nessa área, quer noutras áreas de gestão de sistemas de saneamento básico.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present paper we assess the performance of information-theoretic inspired risks functionals in multilayer perceptrons with reference to the two most popular ones, Mean Square Error and Cross-Entropy. The information-theoretic inspired risks, recently proposed, are: HS and HR2 are, respectively, the Shannon and quadratic Rényi entropies of the error; ZED is a risk reflecting the error density at zero errors; EXP is a generalized exponential risk, able to mimic a wide variety of risk functionals, including the information-thoeretic ones. The experiments were carried out with multilayer perceptrons on 35 public real-world datasets. All experiments were performed according to the same protocol. The statistical tests applied to the experimental results showed that the ubiquitous mean square error was the less interesting risk functional to be used by multilayer perceptrons. Namely, mean square error never achieved a significantly better classification performance than competing risks. Cross-entropy and EXP were the risks found by several tests to be significantly better than their competitors. Counts of significantly better and worse risks have also shown the usefulness of HS and HR2 for some datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de mestrado para obtenção do grau de Mestre em engenharia Mecância

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ao longo dos últimos anos tem-se assistido a um forte desenvolvimento e crescimento do número de parques eólicos instalados no mundo, o que leva a que seja necessário o incremento de ferramentas que permitam aperfeiçoar os sistemas de monitorização e controlo atualmente existentes. Por outro lado, não se deve deixar de ter em conta os custos elevados de operação e manutenção dos sistemas eólicos bem como o facto de os aerogeradores estarem localizadas em locais remotos ou offshore, o que faz aumentar os custos associados à sua exploração. A dissertação nasce da intenção clara do mercado em apostar na supervisão e previsão de avarias graves, de forma a minimizar os encargos subjacentes. Este trabalho de dissertação visa a utilização de redes neuronais para criar uma ferramenta informática de previsão de avarias em caixas de engrenagens em aerogeradores. As redes neuronais são ferramentas informáticas ideais para trabalhar com muita informação, sendo que a sua aplicação depende da qualidade e quantidade dos dados. Para tal irá ser efetuado um estudo em um parque eólico, no qual se analisará as principais avarias detetadas bem como as grandezas que deverão integrar a construção desta rede neuronal. Assim sendo, a informação relativa às diversas máquinas existentes num parque, é de enorme importância para a definição e otimização da rede neuronal a construir. Os resultados obtidos neste trabalho com a aplicação de redes neuronais para a previsão de avarias em caixas de engrenagens do parque eólico de estudo, provam que é possível realizar uma deteção da avaria bem como uma constatação de que a reparação possa ter sido bem efetuada ou mal sucedida, podendo assim ser ajustados os programas de manutenção a efetuar e uma verificação das ações de reparação para sua validação.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numa Estação de Tratamento de Águas Residuais (ETAR), são elevados os custos não só de tratamento das águas residuais como também de manutenção dos equipamentos lá existentes, nesse sentido procura-se utilizar processos capazes de transformar os resíduos em produtos úteis. A Digestão Anaeróbia (DA) é um processo atualmente disponível capaz de contribuir para a redução da poluição ambiental e ao mesmo tempo de valorizar os subprodutos gerados. Durante o processo de DA é produzido um gás, o biogás, que pode ser utilizado como fonte de energia, reduzindo assim a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás, mas a complexidade do processo constitui um obstáculo à sua otimização. Neste trabalho, aplicaram-se Redes Neuronais Artificiais (RNA) ao processo de DA de lamas de ETAR. RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás no digestor I da ETAR Norte da SIMRIA, usando o programa NeuralToolsTM da PalisadeTM para desenvolvimento das RNA. Para tal, efetuou-se uma análise e tratamento de dados referentes aos últimos quatro anos de funcionamento do digestor. Os resultados obtidos permitiram concluir que as RNA modeladas apresentam boa capacidade de generalização do processo de DA. Considera-se que este caso de estudo é promissor, fornecendo uma boa base para o desenvolvimento de modelos eventualmente mais gerais de RNA que, aplicado conjuntamente com as características de funcionamento de um digestor e o processo de DA, permitirá otimizar a produção de biogás em ETAR.