904 resultados para complex analysis
Resumo:
The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.
Resumo:
The spectrum of four-times-ionized krypton (Kr V) has been observed in the 230-4900 angstrom wavelength range, resulting in 91 new classified lines. We were able to identify 21 new energy levels belonging to the 4s(2)4p5d, 4s(2)4p5s, 4s(2)4p6s, 4s(2)4p5p and 4s4p(2)4d configurations. Relativistic Hartree-Fock calculations were used to predict energy levels and transitions. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present a study on a deterministic partially self-avoiding walk (tourist walk), which provides a novel method for texture feature extraction. The method is able to explore an image on all scales simultaneously. Experiments were conducted using different dynamics concerning the tourist walk. A new strategy, based on histograms. to extract information from its joint probability distribution is presented. The promising results are discussed and compared to the best-known methods for texture description reported in the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Texture is one of the most important visual attributes for image analysis. It has been widely used in image analysis and pattern recognition. A partially self-avoiding deterministic walk has recently been proposed as an approach for texture analysis with promising results. This approach uses walkers (called tourists) to exploit the gray scale image contexts in several levels. Here, we present an approach to generate graphs out of the trajectories produced by the tourist walks. The generated graphs embody important characteristics related to tourist transitivity in the image. Computed from these graphs, the statistical position (degree mean) and dispersion (entropy of two vertices with the same degree) measures are used as texture descriptors. A comparison with traditional texture analysis methods is performed to illustrate the high performance of this novel approach. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Complex networks obtained from real-world networks are often characterized by incompleteness and noise, consequences of imperfect sampling as well as artifacts in the acquisition process. Because the characterization, analysis and modeling of complex systems underlain by complex networks are critically affected by the quality and completeness of the respective initial structures, it becomes imperative to devise methodologies for identifying and quantifying the effects of the sampling on the network structure. One way to evaluate these effects is through an analysis of the sensitivity of complex network measurements to perturbations in the topology of the network. In this paper, measurement sensibility is quantified in terms of the relative entropy of the respective distributions. Three particularly important kinds of progressive perturbations to the network are considered, namely, edge suppression, addition and rewiring. The measurements allowing the best balance of stability (smaller sensitivity to perturbations) and discriminability (separation between different network topologies) are identified with respect to each type of perturbation. Such an analysis includes eight different measurements applied on six different complex networks models and three real-world networks. This approach allows one to choose the appropriate measurements in order to obtain accurate results for networks where sampling bias cannot be avoided-a very frequent situation in research on complex networks.
Resumo:
Shape provides one of the most relevant information about an object. This makes shape one of the most important visual attributes used to characterize objects. This paper introduces a novel approach for shape characterization, which combines modeling shape into a complex network and the analysis of its complexity in a dynamic evolution context. Descriptors computed through this approach show to be efficient in shape characterization, incorporating many characteristics, such as scale and rotation invariant. Experiments using two different shape databases (an artificial shapes database and a leaf shape database) are presented in order to evaluate the method. and its results are compared to traditional shape analysis methods found in literature. (C) 2009 Published by Elsevier B.V.
Resumo:
Deviations from the average can provide valuable insights about the organization of natural systems. The present article extends this important principle to the systematic identification and analysis of singular motifs in complex networks. Six measurements quantifying different and complementary features of the connectivity around each node of a network were calculated, and multivariate statistical methods applied to identify singular nodes. The potential of the presented concepts and methodology was illustrated with respect to different types of complex real-world networks, namely the US air transportation network, the protein-protein interactions of the yeast Saccharomyces cerevisiae and the Roget thesaurus networks. The obtained singular motifs possessed unique functional roles in the networks. Three classic theoretical network models were also investigated, with the Barabasi-Albert model resulting in singular motifs corresponding to hubs, confirming the potential of the approach. Interestingly, the number of different types of singular node motifs as well as the number of their instances were found to be considerably higher in the real-world networks than in any of the benchmark networks. Copyright (C) EPLA, 2009
Resumo:
Specific choices about how to represent complex networks can have a substantial impact on the execution time required for the respective construction and analysis of those structures. In this work we report a comparison of the effects of representing complex networks statically by adjacency matrices or dynamically by adjacency lists. Three theoretical models of complex networks are considered: two types of Erdos-Renyi as well as the Barabasi-Albert model. We investigated the effect of the different representations with respect to the construction and measurement of several topological properties (i.e. degree, clustering coefficient, shortest path length, and betweenness centrality). We found that different forms of representation generally have a substantial effect on the execution time, with the sparse representation frequently resulting in remarkably superior performance. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study evaluated the process of ablation produced by a Ti:Sapphire femtosecond laser under different average powers taking place at the enamel/dentin interface. Based on the geometry of ablated microcavities the effective intensity for ablation was obtained. This study shows the validity for the local effective intensity analysis and allows a quantification of the variation in the ablation geometry taking place at the interface of two naturally different materials. It shows that the variation of the diameter of the ablated region as a function of the cavity depth comes essentially from a mechanism of effective intensity attenuation, as a result of a series of complex effects. Additionally, our data are sufficient to predict that a discontinuity on the ablation profile will occur on the interface between two biological media: enamel-dentin, showing a suddenly jump on the ablated cavity dimensions.
Resumo:
The comprehensive characterization of the structure of complex networks is essential to understand the dynamical processes which guide their evolution. The discovery of the scale-free distribution and the small-world properties of real networks were fundamental to stimulate more realistic models and to understand important dynamical processes related to network growth. However, the properties of the network borders (nodes with degree equal to 1), one of its most fragile parts, remained little investigated and understood. The border nodes may be involved in the evolution of structures such as geographical networks. Here we analyze the border trees of complex networks, which are defined as the subgraphs without cycles connected to the remainder of the network (containing cycles) and terminating into border nodes. In addition to describing an algorithm for identification of such tree subgraphs, we also consider how their topological properties can be quantified in terms of their depth and number of leaves. We investigate the properties of border trees for several theoretical models as well as real-world networks. Among the obtained results, we found that more than half of the nodes of some real-world networks belong to the border trees. A power-law with cut-off was observed for the distribution of the depth and number of leaves of the border trees. An analysis of the local role of the nodes in the border trees was also performed.
Resumo:
In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R (h) as the number of parallel paths and the global network permeability P (h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P (h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R (h) . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.
Resumo:
Complex networks exist in many areas of science such as biology, neuroscience, engineering, and sociology. The growing development of this area has led to the introduction of several topological and dynamical measurements, which describe and quantify the structure of networks. Such characterization is essential not only for the modeling of real systems but also for the study of dynamic processes that may take place in them. However, it is not easy to use several measurements for the analysis of complex networks, due to the correlation between them and the difficulty of their visualization. To overcome these limitations, we propose an effective and comprehensive approach for the analysis of complex networks, which allows the visualization of several measurements in a few projections that contain the largest data variance and the classification of networks into three levels of detail, vertices, communities, and the global topology. We also demonstrate the efficiency and the universality of the proposed methods in a series of real-world networks in the three levels.
Resumo:
We discuss potential caveats when estimating topologies of 3D brain networks from surface recordings. It is virtually impossible to record activity from all single neurons in the brain and one has to rely on techniques that measure average activity at sparsely located (non-invasive) recording sites Effects of this spatial sampling in relation to structural network measures like centrality and assortativity were analyzed using multivariate classifiers A simplified model of 3D brain connectivity incorporating both short- and long-range connections served for testing. To mimic M/EEG recordings we sampled this model via non-overlapping regions and weighted nodes and connections according to their proximity to the recording sites We used various complex network models for reference and tried to classify sampled versions of the ""brain-like"" network as one of these archetypes It was found that sampled networks may substantially deviate in topology from the respective original networks for small sample sizes For experimental studies this may imply that surface recordings can yield network structures that might not agree with its generating 3D network. (C) 2010 Elsevier Inc All rights reserved
Resumo:
A new polymeric zinc(II) complex with thiophene-2-carboxylic acid (-tpc) of composition [Zn2(C20H12O8S4)]n was obtained and structurally characterized by X-ray diffraction, thermal analysis, nuclear magnetic resonance (NMR), and infrared spectroscopies. Upfield shift in the 1H-NMR spectrum is explained by the crystalline structure, which shows the thiophene rings overlapping each other in parallel pairs. The compound crystallizes in the monoclinic system, space group P21/c, with a = 9.7074(4) angstrom, b = 13.5227(3) angstrom, c = 18.9735(7) angstrom, = 95.797(10)degrees, and Z = 4. Three -tpc groups bridge between two Zn(II) ions through oxygens and the fourth one bridges between one of these ions and the third one, symmetry related by a twofold screw axis. This arrangement gives rise to infinite chains along the crystallographic a direction. The metal atoms display an approximate tetrahedral configuration. The complex is insoluble in water, ethanol, and acetone, but soluble in dimethyl sulfoxide.
Structural and thermodynamic analysis of thrombin:suramin interaction in solution and crystal phases
Resumo:
Suramin is a hexasulfonated naphthylurea which has been recently characterized as a non-competitive inhibitor of human alpha-thrombin activity over fibrinogen, although its binding site and mode of interaction with the enzyme remain elusive. Here, we determined two X-ray structure of the thrombin: suramin complex, refined at 2.4 angstrom resolution. While a single thrombin: suramin complex was found in the asymmetric unit cell of the crystal, some of the crystallographic contacts with symmetrically related molecules are mediated by both the enzyme and the ligand. Molecular dynamics simulations with the 1:1 complex demonstrate a large rearrangement of suramin in the complex, but with the protein scaffold and the more extensive protein-ligand regions keep unchanged. Small-angle X-ray scattering measurements at high micromolar concentration demonstrate a suramin-induced dimerization of the enzyme. These data indicating a dissimilar binding mode in the monomeric and oligomeric states, with a monomeric, 1:1 complex to be more likely to exist at the thrombin physiological, nanomolar concentration range. Collectively, close understanding on the structural basis for interaction is given which might establish a basis for design of suramin analogues targeting thrombin. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.