921 resultados para chains


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Even though cellulose is the most abundant polymer on Earth, its utilisation has some limitations regarding its efficient use in the production of bio-based materials. It is quite clear from statistics that only a relatively small fraction of cellulose is used for the production of commodity materials and chemicals. This fact was the driving force in our research into understanding, designing, synthesising and finding new alternative applications for this well-known but underused biomaterial. This thesis focuses on the developing advanced materials and products from cellulose by using novel approaches. The aim of this study was to investigate and explore the versatility of cellulose as a starting material for the synthesis of cellulose-based materials, to introduce new synthetic methods for cellulose modification, and to widen the already existing synthetic approaches. Due to the insolubility of cellulose in organic solvents and in water, ionic liquids were applied extensively as the reaction media in the modification reactions. Cellulose derivatives were designed and fine-tuned to obtain desired properties. This was done by altering the inherent hydrogen bond network by introducing different substituents. These substituents either prevented spontaneous formation of hydrogen bonding completely or created new interactions between the cellulose chains. This enabled spontaneous self-assembly leading to supramolecular structures. It was also demonstrated that the material properties of cellulose can be modified even those molecules with a low degree of substitution when highly hydrophobic films and aerogels were prepared from fatty acid derivatives of nanocellulose. Development towards advanced cellulose-based materials was demostrated by synthesising chlorophyllcellulose derivatives that showed potential in photocurrent generation systems. In addition, liquid crystalline cellulose derivatives prepared in this study, showed to function as UV-absorbers in paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis which consists of an introduction and four peer-reviewed original publications studies the problems of haplotype inference (haplotyping) and local alignment significance. The problems studied here belong to the broad area of bioinformatics and computational biology. The presented solutions are computationally fast and accurate, which makes them practical in high-throughput sequence data analysis. Haplotype inference is a computational problem where the goal is to estimate haplotypes from a sample of genotypes as accurately as possible. This problem is important as the direct measurement of haplotypes is difficult, whereas the genotypes are easier to quantify. Haplotypes are the key-players when studying for example the genetic causes of diseases. In this thesis, three methods are presented for the haplotype inference problem referred to as HaploParser, HIT, and BACH. HaploParser is based on a combinatorial mosaic model and hierarchical parsing that together mimic recombinations and point-mutations in a biologically plausible way. In this mosaic model, the current population is assumed to be evolved from a small founder population. Thus, the haplotypes of the current population are recombinations of the (implicit) founder haplotypes with some point--mutations. HIT (Haplotype Inference Technique) uses a hidden Markov model for haplotypes and efficient algorithms are presented to learn this model from genotype data. The model structure of HIT is analogous to the mosaic model of HaploParser with founder haplotypes. Therefore, it can be seen as a probabilistic model of recombinations and point-mutations. BACH (Bayesian Context-based Haplotyping) utilizes a context tree weighting algorithm to efficiently sum over all variable-length Markov chains to evaluate the posterior probability of a haplotype configuration. Algorithms are presented that find haplotype configurations with high posterior probability. BACH is the most accurate method presented in this thesis and has comparable performance to the best available software for haplotype inference. Local alignment significance is a computational problem where one is interested in whether the local similarities in two sequences are due to the fact that the sequences are related or just by chance. Similarity of sequences is measured by their best local alignment score and from that, a p-value is computed. This p-value is the probability of picking two sequences from the null model that have as good or better best local alignment score. Local alignment significance is used routinely for example in homology searches. In this thesis, a general framework is sketched that allows one to compute a tight upper bound for the p-value of a local pairwise alignment score. Unlike the previous methods, the presented framework is not affeced by so-called edge-effects and can handle gaps (deletions and insertions) without troublesome sampling and curve fitting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two typical alternative conformations for double strandee polynucleotides with Watson-Crick base pairing scheme are presented. these types avoid tangling of the chains. Representative models of these types with two different views, to show the similarity and dissimilarity between these models and the Watson-Crick model, are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectrum of short-closed chains up to N=12 are studied by exact diagonalization to obtain the spin-wave spectrum of the Hamiltonian H=2J Sigma i=1Nsi.si+1+2J alpha Sigma i=1Nsi.si+2, -1.0chains indicate that S=0 bound magnon states lie partly below the spin-wave states with S=1 only for alpha >or=0.3 and alpha

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vehicles affect the concentrations of ambient airborne particles through exhaust emissions, but particles are also formed in the mechanical processes in the tire-road interface, brakes, and engine. Particles deposited on or in the vicinity of the road may be re-entrained, or resuspended, into air through vehicle-induced turbulence and shearing stress of the tires. A commonly used term for these particles is road dust . The processes affecting road dust emissions are complex and currently not well known. Road dust has been acknowledged as a dominant source of PM10 especially during spring in the sub-arctic urban areas, e.g. in Scandinavia, Finland, North America and Japan. The high proportion of road dust in sub-arctic regions of the world has been linked to the snowy winter conditions that make it necessary to use traction control methods. Traction control methods include dispersion of traction sand, melting of ice with brine solutions, and equipping the tires with either metal studs (studded winter tires), snow chains, or special tire design (friction tires). Several of these methods enhance the formation of mineral particles from pavement wear and/or from traction sand that accumulate in the road environment during winter. When snow and ice melt and surfaces dry out, traffic-induced turbulence makes some of the particles airborne. A general aim of this study was to study processes and factors underlying and affecting the formation and emissions of road dust from paved road surfaces. Special emphasis was placed on studying particle formation and sources during tire road interaction, especially when different applications of traction control, namely traction sanding and/or winter tires were in use. Respirable particles with aerodynamic diameter below 10 micrometers (PM10) have been the main concern, but other size ranges and particle size distributions were also studied. The following specific research questions were addressed: i) How do traction sanding and physical properties of the traction sand aggregate affect formation of road dust? ii) How do studded tires affect the formation of road dust when compared with friction tires? iii) What are the composition and sources of airborne road dust in a road simulator and during a springtime road dust episode in Finland? iv) What is the size distribution of abrasion particles from tire-road interaction? The studies were conducted both in a road simulator and in field conditions. The test results from the road simulator showed that traction sanding increased road dust emissions, and that the effect became more dominant with increasing sand load. A high percentage of fine-grained anti-skid aggregate of overall grading increased the PM10 concentrations. Anti-skid aggregate with poor resistance to fragmentation resulted in higher PM levels compared with the other aggregates, and the effect became more significant with higher aggregate loads. Glaciofluvial aggregates tended to cause higher particle concentrations than crushed rocks with good fragmentation resistance. Comparison of tire types showed that studded tires result in higher formation of PM emissions compared with friction tires. The same trend between the tires was present in the tests with and without anti-skid aggregate. This finding applies to test conditions of the road simulator with negligible resuspension. Source and composition analysis showed that the particles in the road simulator were mainly minerals and originated from both traction sand and pavement aggregates. A clear contribution of particles from anti-skid aggregate to ambient PM and dust deposition was also observed in urban conditions. The road simulator results showed that the interaction between tires, anti-skid aggregate and road surface is important in dust production and the relative contributions of these sources depend on their properties. Traction sand grains are fragmented into smaller particles under the tires, but they also wear the pavement aggregate. Therefore particles from both aggregates are observed. The mass size distribution of traction sand and pavement wear particles was mainly coarse, but fine and submicron particles were also present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two methods were employed to measure the rate of ribonucleic acid (RNA) chain growth in vivo in Mycobacterium tuberculosis H37Rv cultures growing in Sauton medium at 37 degrees C, with a generation time of 10 h. In the first, the bacteria were allowed to assimilate [3H]uracil or [3H]guanine into their RNA for short time periods. The RNA was then extracted and hydrolyzed with alkali, and the radioactivity in the resulting nucleotides and nucleosides was measured. The data obtained by this method allowed the calculation of the individual nucleotide step times during the growth of RNA chains, from which the average rate of RNA chain elongation was estimated to be about 4 nucleotides per s. The second method employed the antibiotic rifampin, which specifically inhibits the initiation of RNA synthesis without interfering with the elongation and completion of nascent RNA chains. Usint this method, the transcription time of the 16S, 23S, and 5S ribosomal RNA genes was estimated to be 7.6 min, which corresponds to a ribosomal RNA chain growth rate of 10 nucleotides per s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite much research on forest biodiversity in Fennoscandia, the exact mechanisms of species declines in dead-wood dependent fungi are still poorly understood. In particular, there is only limited information on why certain fungal species have responded negatively to habitat loss and fragmentation, while others have not. Understanding the mechanisms behind species declines would be essential for the design and development of ecologically effective and scientifically informed conservation measures, and management practices that would promote biodiversity in production forests. In this thesis I study the ecology of polypores and their responses to forest management, with a particular focus on why some species have declined more than others. The data considered in the thesis comprise altogether 98,318 dead-wood objects, with 43,085 observations of 174 fungal species. Out of these, 1,964 observations represent 58 red-listed species. The data were collected from 496 sites, including woodland key habitats, clear-cuts with retention trees, mature managed forests, and natural or natural-like forests in southern Finland and Russian Karelia. I show that the most relevant way of measuring resource availability can differ to a great extent between species seemingly sharing the same resources. It is thus critical to measure the availability of resources in a way that takes into account the ecological requirements of the species. The results show that connectivity at the local, landscape and regional scales is important especially for the highly specialized species, many of which are also red-listed. Habitat loss and fragmentation affect not only species diversity but also the relative abundances of the species and, consequently, species interactions and fungal successional pathways. Changes in species distributions and abundances are likely to affect the food chains in which wood-inhabiting fungi are involved, and thus the functioning of the whole forest ecosystem. The findings of my thesis highlight the importance of protecting well-connected, large and high-quality forest areas to maintain forest biodiversity. Small habitat patches distributed across the landscape are likely to contribute only marginally to protection of red-listed species, especially if habitat quality is not substantially higher than in ordinary managed forest, as is the case with woodland key habitats. Key habitats might supplement the forest protection network if they were delineated larger and if harvesting of individual trees was prohibited in them. Taking the landscape perspective into account in the design and development of conservation measures is critical while striving to halt the decline of forest biodiversity in an ecologically effective manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bisphenol-A (BPA) adsorption onto inorganic-organic clays (IOCs) was investigated. For this purpose, IOCs synthesised using octadecyltrimethylammonium bromide (ODTMA, organic modifier) and hydroxy aluminium (Al13, inorganic modifier) were used. Three intercalation methods were employed with varying ODTMA concentration in the synthesis of IOCs. Molecular interactions of clay surfaces with ODTMA and Al13 and their arrangements within the interlayers were determined using Fourier transform infrared spectroscopy (FTIR). Surface area and porous structure of IOCs were determined by applying Brunauer, Emmett, and Teller (BET) method to N2 adsorption-desorption isotherms. Surface area decreased upon ODTMA intercalation while it increased with Al13 pillaring. As a result, BET specific surface area of IOCs was considerably higher than those of organoclays. Initial concentration of BPA, contact time and adsorbent dose significantly affected BPA adsorption into IOCs. Pseudo-second order kinetics model is the best fit for BPA adsorption into IOCs. Both Langmuir and Freundlich adsorption isotherms were applicable for BPA adsorption (R2 > 0.91) for IOCs. Langmuir maximum adsorption capacity for IOCs was as high as 109.89 mg g‒1 and it was closely related to the loaded ODTMA amount into the clay. Hydrophobic interactions between long alkyl chains of ODTMA and BPA are responsible for BPA adsorption into IOCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The juvenile sea squirt wanders through the sea searching for a suitable rock or hunk of coral to cling to and make its home for life. For this task it has a rudimentary nervous system. When it finds its spot and takes root, it doesn't need its brain any more so it eats it. It's rather like getting tenure. Daniel C. Dennett (from Consciousness Explained, 1991) The little sea squirt needs its brain for a task that is very simple and short. When the task is completed, the sea squirt starts a new life in a vegetative state, after having a nourishing meal. The little brain is more tightly structured than our massive primate brains. The number of neurons is exact, no leeway in neural proliferation is tolerated. Each neuroblast migrates exactly to the correct position, and only a certain number of connections with the right companions is allowed. In comparison, growth of a mammalian brain is a merry mess. The reason is obvious: Squirt brain needs to perform only a few, predictable functions, before becoming waste. The more mobile and complex mammals engage their brains in tasks requiring quick adaptation and plasticity in a constantly changing environment. Although the regulation of nervous system development varies between species, many regulatory elements remain the same. For example, all multicellular animals possess a collection of proteoglycans (PG); proteins with attached, complex sugar chains called glycosaminoglycans (GAG). In development, PGs participate in the organization of the animal body, like in the construction of parts of the nervous system. The PGs capture water with their GAG chains, forming a biochemically active gel at the surface of the cell, and in the extracellular matrix (ECM). In the nervous system, this gel traps inside it different molecules: growth factors and ECM-associated proteins. They regulate the proliferation of neural stem cells (NSC), guide the migration of neurons, and coordinate the formation of neuronal connections. In this work I have followed the role of two molecules contributing to the complexity of mammalian brain development. N-syndecan is a transmembrane heparan sulfate proteoglycan (HSPG) with cell signaling functions. Heparin-binding growth-associated molecule (HB-GAM) is an ECM-associated protein with high expression in the perinatal nervous system, and high affinity to HS and heparin. N-syndecan is a receptor for several growth factors and for HB-GAM. HB-GAM induces specific signaling via N-syndecan, activating c-Src, calcium/calmodulin-dependent serine protein kinase (CASK) and cortactin. By studying the gene knockouts of HB-GAM and N-syndecan in mice, I have found that HB-GAM and N-syndecan are involved as a receptor-ligand-pair in neural migration and differentiation. HB-GAM competes with the growth factors fibriblast growth factor (FGF)-2 and heparin-binding epidermal growth factor (HB-EGF) in HS-binding, causing NSCs to stop proliferation and to differentiate, and affects HB-EGF-induced EGF receptor (EGFR) signaling in neural cells during migration. N-syndecan signaling affects the motility of young neurons, by boosting EGFR-mediated cell migration. In addition, these two receptors form a complex at the surface of the neurons, probably creating a motility-regulating structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrins are heterodimeric transmembrane adhesion receptors composed of alpha- and beta-subunits and they are vital for the function of multicellular organisms. Integrin-mediated adhesion is a complex process involving both affinity regulation and coupling to the actin cytoskeleton. Integrins also function as bidirectional signaling devices, regulating cell adhesion and migration after inside-out signaling, but also signal into the cell to regulate growth, differentiation and apoptosis after ligand binding. The LFA-1 integrin is exclusively expressed in leukocytes and is of fundamental importance for the function of the immune system. The LFA-1 integrins have short intracellular tails, which are devoid of catalytic activity. These cytoplasmic domains are important for integrin regulation and both the alpha and beta chain become phosphorylated. The alpha chain is constitutively phosphorylated, but the beta chain becomes phosphorylated on serine and functionally important threonine residues only after cell activation. The cytoplasmic tails of LFA-1 bind to many cytoskeletal and signaling proteins regulating numerous cell functions. However, the molecular mechanisms behind these interactions have been poorly understood. Phosphorylation of the cytoplasmic tails of the LFA-1 integrin could provide a mechanism to regulate integrin-mediated cytoskeletal interactions and take part in T cell signaling. In this study, the effects of phosphorylation of LFA-1 integrin cytoplasmic tails on different cellular functions were examined. Site-specific phosphorylation of both the alpha- and beta-chains of the LFA-1 was shown to have a role in the regulation of the LFA-1 integrin.Alpha-chain Ser1140 is needed for integrin conformational changes after chemokine- or integrin ligand-induced activation or after activation induced by active Rap1, whereas beta-chain binds to 14-3-3 proteins through the phosphorylated Thr758 and mediates cytoskeletal reorganization. Thr758 phosphorylation also acts as a molecular switch to inhibit filamin binding and allows 14-3-3 protein binding to integrin cytoplasmic domain, and it was also shown to lead to T cell adhesion, Rac-1/Cdc42 activation and expression of the T cell activation marker CD69, indicating a signaling function for Thr758 phosphorylation in T cells. Thus, phosphorylation of the cytoplasmic tails of LFA-1 plays an important role in different functions of the LFA-1 integrin in T cells. It is of vital importance to study the mechanisms and components of integrin regulation since leukocyte adhesion is involved in many functions of the immune system and defects in the regulation of LFA-1 contributes to auto-immune diseases and fundamental defects in the immune system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis of 11 crystal structures of cyclic dipeptides so far reported in the literature is made, with main reference to the internal parameters of these molecules. Preferred conformations of the side chains of cyclic dipeptides with different α-amino acid residues have been studied by classical energy calculations. The possible conformations of the DKP ring are also studied. The significance of the non-bonded interaction in deciding the pathway for conformational change has also been investigated. The agreement between theoretical results and experimental observations is quite good, both with respect to the conformation of these molecules as well as the enthalpy difference as estimated from n.m.r. studies between different conformers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jacalin [Artocarpus integrifolia (jack fruit) agglutinin] is made up of two types of chains, heavy and light, with M(r) values of 16,200 +/- 1200 and 2090 +/- 300 respectively (on the basis of gel-permeation chromatography under denaturing conditions). Its complete amino acid sequence was determined by manual degradation using a 4-dimethylaminoazobenzene 4'-isothiocyanate double-coupling method. Peptide fragments for sequence analysis were obtained by chemical cleavages of the heavy chain with CNBr, hydroxylamine hydrochloride and iodosobenzoic acid and enzymic cleavage with Staphylococcus aureus proteinase. The peptides were purified by a combination gel-permeation and reverse-phase chromatography. The light chains, being only 20 residues long, could be sequenced without fragmentation. Amino acid analyses and carboxypeptidase-Y-digestion C-terminal analyses of the subunits provided supportive evidence for their sequence. Computer-assisted alignment of the jacalin heavy-chain sequence failed to show sequence similarity to that of any lectin for which the complete sequence is known. Analyses of the sequence showed the presence of an internal repeat spanning residues 7-64 and 76-130. The internal repeat was found to be statistically significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of proteins at the interface between two immiscible electrolyte solutions has been found to be key to their bioelectroactivity at such interfaces. Combined with interfacial complexation of organic phase anions by cationic proteins, this adsorption process may be exploited to achieve nanomolar protein detection. In this study, replica exchange molecular dynamics simulations have been performed to elucidate for the first time the molecular mechanism of adsorption and subsequent unfolding of hen egg white lysozyme at low pH at a polarized 1,2-dichloroethane/water interface. The unfolding of lysozyme was observed to occur as soon as it reaches the organic−aqueous interface,which resulted in a number of distinct orientations at the interface. In all cases, lysozyme interacted with the organic phase through regions rich in nonpolar amino acids, such that the side chains are directed toward the organic phase, whereas charged and polar residues were oriented toward the aqueous phase. By contrast, as expected, lysozyme in neat water at low pH does not exhibit significant structural changes. These findings demonstrate the key influence of the organic phase upon adsorption of lysozyme under the influence of an electric field, which results in the unfolding of its structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary structure of collagen is characterized by the repeating tripeptide sequence (Gly-R2-R3)n. The results of theoretical studies, carried out using contact criteria to compute the stereochemically allowed orientations for various side chains at locations 2 and 3, are reported here. It is found that side chains with only γ-atoms, as in valine, serine and threonine, or with only one δ-methyl group, as in isoleucine, can occur equally well at locations 2 and 3, as is actually the case in collagen. Side chains with two Cδ-atoms, as in leucine and phenyl-alanine, can also be accommodated at both positions. However, if they occur as R3 their freedom of orientation is severely restricted in the presence of a proline residue as R2 in a neighbouring chain. If water molecules bound to the chains of the triple helix are assumed to be present, then location 3 is virtually impossible for leucine and phenylalanine residues. Location 2 is, however, unaffected, and their presence as R2 can help to shield the water molecules from disturbance by the solvent medium. This may be the reason for the preferential occurrence of Leu and Phe residues in location 2 in the collagen triplets, although the polypeptides (Gly-Pro-Leu)n and (Gly-Pro-Phe)n form collagen-like structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The title compound, C13H9Cl2N, has an intramolecular C-H center dot center dot center dot O close contact, and presents the NH group syn to the meta-chloro group in the aniline ring and trans to the C=O group. The crystal packing is formed by infinite chains of N-H center dot center dot center dot O hydrogen bonds along the c axis. Cl center dot center dot center dot Cl [3.474 (1) angstrom] contacts link chains. The crystal used for data collection was a twin, the domains related by the twin law 0.948 (1)/0.052 (1).