978 resultados para bone morphogenetic protein 15


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1gfp transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1+/gfp recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP+ cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1+/gfp cornea was 366 cells/mm2. In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP+ cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late adolescence and early adulthood are times of major behavioral transition in young women as they become more independent and make choices about lifestyle that will affect their long-term health. We prospectively evaluated nutritional and lifestyle factors in 566 15 30-year-old female twins participating in a mixed longitudinal study of diet and lifestyle.Twins completed 790 visits including questionnaires and measures of anthropometry. Nonparametric tests (chi-square, Mann-Whitney U, and Kruskal-Wallis; SPSS) were used to examine age-related differences in selected variables. Dietary calcium intake by short food frequency questionnaire was relatively low [511 (321,747)] mg/day (median, IQR; 60 % of estimated daily total) and did not vary significantly with age. The number of young women who reported ever consuming alcohol (12+ standard drinks ever) increased from 50 % under 18 years to 93 99 % for the 18+ age groups. Of those who consumed alcohol in the preceding year, monthly intake doubled from under 18 years (5.7, 3.9, 19.0 standard drinks; median, IQR) to 18+ years (12.0, 4.7, 26.0; P < 0.001) with the highest consumers being 21 23 and 27 29 years. At age 15 17 years, 14 % reported ever smoking and by age 27–29, 51 % had smoked (P = 0.002). Under the age of 20 years, average cigarette consumption in smokers was six cigarettes per day, increasing to ten above age 20 (P < 0.001). Participation in sporting activity decreased with age (P < 0.001): 47.5 % of 15–17-year-olds undertook 4 or more hour/week of sport, compared with 23.5 % at age 27–29 years. Conversely, sedentary behavior increased with age: 25.0 % of 15–17-year-olds reported 1 or less hour/week of exercise compared with 50.0 % at age 27–29 years. BMI increased with age (P = 0.011), from 21.3 (19.5, 23.6; median, IQR) in the youngest to 23.1 (21.5, 25.9) in the oldest. These highly significant changes in behavior in young women as they transitioned into independent adult living are predicted to impact adversely on bone and other health outcomes in later life. It is crucial to improve understanding of the determinants of these changes and to develop effective interventions to improve long-term health outcomes in young women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract:
Postmenopausal women on aromatase inhibitors (AI) are at risk of aromatase inhibitor-associated bone loss (AIBL) and fractures.

In 2005 Osteoporosis Australia proposed an algorithm for bisphosphonate intervention. Three hundred and three postmenopausal women with early breast cancer (EBC) were enrolled (osteoporotic, n=25; osteopaenic, n=146; normal bone mineral density (BMD), n=126). Weekly alendronate (70 mg) treatment efficacy as triggered by the algorithm in preventing bone loss was evaluated. All patients received anastrozole (1 mg daily), calcium and vitamin D.

Results:
All osteoporotic patients received alendronate at baseline. Eleven out of the 146 (7.5%) osteopaenic patients commenced alendronate within 18 months of participation and eleven commenced after. One hundred and twenty four out of the 146 (84.9%) osteopaenic patients and all 126 with normal baseline BMD did not trigger the algorithm.

At three years, lumbar spine mean BMD increased (15.6%, p<0.01) in the osteoporotic group. BMD in the osteopaenic group with early intervention significantly increased at three years (6.3%, p=0.02). No significant change was seen in the late intervention group. No change was observed in those with osteopaenia without alendronate.

There was a significant drop in lumbar spine (−5.4%) and hip (−4.5%) mean BMD, in the normal BMD group, none of whom received alendronate.

Fracture data will be presented.

Conclusion:
In postmenopausal women with endocrine-responsive EBC, BMD improved over time when a bisphosphonate is administered with anastrozole in osteoporotic patients using an osteoporosis schedule. Subjects with normal baseline BMD experienced the greatest BMD loss, although none became osteoporotic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regular exercise and adequate nutrition, particularly dietary calcium, vitamin D, and protein, are prescribed as strategies to optimize peak bone mass and maintain bone and muscle health throughout life. Although the mechanism of action of exercise and nutrition on bone and muscle health are different-exercise has a site-specific modifying effect, whereas nutrition has a permissive generalized effect-there is evidence that combining calcium (or calcium rich dairy foods) or dietary protein with exercise can have a synergetic effect on bone mass and muscle health, respectively. However, many questions still remain as to whether there is a threshold level for these nutrients to optimize the exercise-induced gains. Further studies are also needed to investigate whether other dietary factors, such as vitamin D, soy isoflavones or omega-3 fatty acids, or a multinutrient supplement, can enhance the effects of exercise on bone and muscle health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While physical activity, energy restriction and weight loss are the cornerstone of type 2 diabetes management, less emphasis is placed on optimizing skeletal muscle mass. As muscle is the largest mass of insulin-sensitive tissue and the predominant reservoir for glucose disposal, there is a need to develop safe and effective evidence-based, lifestyle management strategies that optimize muscle mass as well as improve glycaemic control and cardiometabolic risk factors in people with this disease, particularly older adults who experience accelerated muscle loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the association between undercarboxylated osteocalcin (ucOC) and lower-limb muscle strength in women over the age of 70years. The study also aims to confirm the association between bone turnover markers and heel ultrasound measures. A post-hoc analysis using data collected as part of a randomized placebo-controlled trial of vitamin D supplementation. An immunoassay was used to quantify total OC (tOC), with hydroxyapatite pre-treatment for ucOC. We determined associations of absolute and relative (ucOC/tOC; ucOC%) measures of ucOC with lower-limb muscle strength, heel ultrasound measures of speed of sound (SOS) and broadband ultrasound attenuation (BUA), bone turnover markers (BTMs; P1NP and CTx) and the acute phase protein alpha-1-antichymotrypsin (α-ACT). ucOC%, but not absolute ucOC concentration, was positively associated with hip flexor, hip abductor and quadriceps muscle strength (all p<0.05). ucOC% was negatively associated with α-ACT (β-coefficient=-0.24, p=0.02). tOC was positively associated with both P1NP and CTx (p<0.001). For each per unit increase in tOC (μg/L) there was a corresponding lower BUA, SOS and SI (β-coefficient = -0.28; -0.23 and -0.23, respectively; all p<0.04). In conclusion, ucOC% is positively associated with muscle strength and negatively associated with α-ACT. These data support a role for ucOC in musculoskeletal interactions in humans. Whilst tOC is associated with bone health, ucOC% and ucOC may also be linked to falls and fracture risk by influencing muscle function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine whether and how global life satisfaction is associated with bone mineral density (BMD) and bone loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This 4-year cluster randomised controlled trial of 365 boys and 362 girls (mean age 8.1 ± 0.3 years) from grade 2 in 29 primary schools investigated the effects of a specialist-taught physical education (PE) program on bone strength and body composition. All children received 150 min/week of common practice (CP) PE from general classroom teachers but in 13 schools 100 min/week of CP PE was replaced by specialized-led PE (SPE) by teachers who emphasized more vigorous exercise/games combined with static and dynamic postural activities involving muscle strength. Outcome measures assessed in grades 2, 4, and 6 included: total body bone mineral content (BMC), lean mass (LM) and fat mass (FM) by DXA, and radius and tibia (4% and 66% sites) bone structure, volumetric density and strength, and muscle cross-sectional area (CSA) by pQCT. After 4-years, gains in total body BMC, FM and muscle CSA were similar between the groups in both sexes, but girls in the SPE group experienced a greater gain in total body LM [mean (95%CI), 1.0kg (0.2, 1.9)]. Compared to CP, girls in the SPE group also had greater gains in cortical area (CoA) and cortical thickness (CoTh) at the mid-tibia [CoA, 5.0% (0.2, 1.9); CoTh 7.5% (2.4, 12.6)] and mid-radius [CoA, 9.3% (3.5, 15.1); CoTh 14.4% (6.1, 22.7)], while SPE boys had a 5.2% (0.4, 10.0) greater gain in mid-tibia CoTh. These benefits were due to reduced endocortical expansion. There were no significant benefits of SPE on total bone area, cortical density or bone strength at the mid-shaft sites, nor any appreciable effects at the distal skeletal sites. This study indicates that a specialist-led school-based PE program improves cortical bone structure, due to reduced endocortical expansion. This finding challenges the notion that periosteal apposition is the predominant response of bone to loading during the pre- and early-pubertal period. This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite biomaterials provide alternative materials that improve on the properties of the individual components and can be used to replace or restore damaged or diseased tissues. Typically, a composite biomaterial consists of a matrix, often a polymer, with one or more fillers that can be made up of particles, sheets or fibres. The polymer matrix can be chosen from a wide range of compositions and can be fabricated easily and rapidly into complex shapes and structures. In the present study we have examined three size fractions of collagen-containing particles embedded at up to 60% w/w in a poly(vinyl alcohol) (PVA) matrix. The particles used were bone particles, which are a mineral-collagen composite and demineralised bone, which gives naturally cross-linked collagen particles. SEM showed well dispersed particles in the PVA matrix for all concentrations and sizes of particles, with FTIR suggesting collagen to PVA hydrogen bonding. Tg of membranes shifted to a slightly lower temperature with increasing collagen content, along with a minor amount of melting point depression. The modulus and tensile strength of membranes were improved with the addition of both particles up to 10 wt%, and were clearly strengthened by the addition, although this effect decreased with higher collagen loadings. Elongation at break decreased with collagen content. Cell adhesion to the membranes was observed associated with the collagen particles, indicating a lack of cytotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To better understand the effects of prolonged bed-rest in women, 24 healthy women aged 25 to 40 years participated in 60-days of strict 6° head-down tilt bed-rest (WISE-2005). Subjects were assigned to either a control group (CON, n=8) which performed no countermeasure, an exercise group (EXE, n=8) undertaking a combination of resistive and endurance training or a nutrition group (NUT, n=8), which received a high protein diet. Using peripheral quantitative computed tomography (pQCT) and dual X-ray absorptiometry (DXA), bone mineral density (BMD) changes at various sites, body-composition and lower-leg and forearm muscle cross-sectional area were measured up to 1-year after bed-rest. Bone loss was greatest at the distal tibia and proximal femur, though losses in trabecular density at the distal radius were also seen. Some of these bone losses remained statistically significant one-year after bed-rest. There was no statistically significant impediment of bone loss by either countermeasure in comparison to the control-group. The exercise countermeasure did, however, reduce muscle cross-sectional area and lean mass loss in the lower-limb and also resulted in a greater loss of fat mass whereas the nutrition countermeasure had no impact on these parameters. The findings suggest that regional differences in bone loss occur in women during prolonged bed-rest with incomplete recovery of this loss one-year after bed-rest. The countermeasures as implemented were not optimal in preventing bone loss during bed-rest and further development is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prolonged bed rest is used to simulate the effects of spaceflight and causes disuse-related loss of bone. While bone density changes during bed rest have been described, there are no data on changes in bone microstructure. Twenty-four healthy women aged 25 to 40 years participated in 60 days of strict 6-degree head-down tilt bed rest (WISE 2005). Subjects were assigned to either a control group (CON, n = 8), which performed no countermeasures; an exercise group (EXE, n = 8), which undertook a combination of resistive and endurance training; or a nutrition group (NUT, n = 8), which received a high-protein diet. Density and structural parameters of the distal tibia and radius were measured at baseline, during, and up to 1 year after bed rest by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bed rest was associated with reductions in all distal tibial density parameters (p < 0.001), whereas only distal radius trabecular density decreased. Trabecular separation increased at both the distal tibia and distal radius (p < 0.001), but these effects were first significant after bed rest. Reduction in trabecular number was similar in magnitude at the distal radius (p = 0.021) and distal tibia (p < 0.001). Cortical thickness decreased at the distal tibia only (p < 0.001). There were no significant effects on bone structure or density of the countermeasures (p ≥ 0.057). As measured with HR-pQCT, it is concluded that deterioration in bone microstructure and density occur in women during and after prolonged bed rest. The exercise and nutrition countermeasures were ineffective in preventing these changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flaxseed protein isolate (FPI) and flaxseed gum (FG) were extracted, and the electrostatic complexation between these two biopolymers was studied as a function of pH and FPI-to-FG ratio using turbidimetric and electrophoretic mobility (zeta potential) tests. The zeta potential values of FPI, FG, and their mixtures at the FPI-to-FG ratios of 1:1, 3:1, 5:1, 10:1, 15:1 were measured over a pH range 8.0-1.5. The alteration of the secondary structure of FPI as a function of pH was studied using circular dichroism. The proportion of a-helical structure decreased, whereas both β-sheet structure and random coil structure increased with the lowering of pH from 8.0 to 3.0. The acidic pH affected the secondary structure of FPI and the unfolding of helix conformation facilitated the complexation of FPI with FG. The optimum FPI-to-FG ratio for complex coacervation was found to be 3:1. The critical pH values associated with the formation of soluble (pHc) and insoluble (pHΦ1) complexes at the optimum FPI-to-FG ratio were found to be 6.0 and 4.5, respectively. The optimum pH (pHopt) for the optimum complex coacervation was 3.1. The instability and dissolution of FPI-FG complex coacervates started (pHΦ2) at pH2.1. These findings contribute to the development of FPI-FG complex coacervates as delivery vehicles for unstable albeit valuable nutrients such as omega-3 fatty acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)