943 resultados para arithmetic
Resumo:
The ultrastructure of capillaries in skeletal muscle was morphometrically assessed in vastus lateralis muscle (VL) biopsies taken before and after exercise from 22 participants of two training studies. In study 1 (8 wk of ergometer training), light microscopy revealed capillary-fiber (C/F) ratio (+27%) and capillary density (+16%) to be higher (P ≤ 0.05) in postexercise biopsies than in preexercise biopsies from all 10 participants. In study 2 (6 mo of moderate running), C/F ratio and capillary density were increased (+23% and +20%; respectively, P ≤ 0.05) in VL biopsies from 6 angiogenesis responders (AR) after training, whereas 6 nonangiogenesis responders (NR) showed nonsignificant changes in these structural indicators (-4%/-4%, respectively). Forty capillary profiles per participant were evaluated by point and intersection counting on cross sections after transmission electron microscopy. In study 1, volume density (Vv) and mean arithmetic thickness (T) of endothelial cells (ECs; +19%/+17%, respectively) and pericytes (PCs; +20%/+21%, respectively) were higher (P ≤ 0.05), whereas Vv and T of the pericapillary basement membrane (BM) were -23%/-22% lower (P ≤ 0.05), respectively, in posttraining biopsies. In study 2, exercise-related differences between AR and NR-groups were found for Vv and T of PCs (AR, +26%/+22%, respectively, both P ≤ 0.05; NR, +1%/-3%, respectively, both P > 0.05) and BM (AR, -14%/-13%, respectively, both P ≤ 0.05; NR, -9%/-11%, respectively, P = 0.07/0.10). Vv and T of ECs were higher (AR, +16%/+18%, respectively; NR, +6%/+6%, respectively; all P ≤ 0.05) in both groups. The PC coverage was higher (+13%, P ≤ 0.05) in VL biopsies of individuals in the AR group but nonsignificantly altered (+3%, P > 0.05) in those of the NR group after training. Our study suggests that intensified PC mobilization and BM thinning are related to exercise-induced angiogenesis in human skeletal muscle, whereas training per se induces EC-thickening.
Resumo:
Background: Little research has been conducted to assess the effect of using memory training with school aged children who were born very preterm. This study aimed to determine whether two types of memory training approaches resulted in an improvement of trained functions and/or a generalization of the training effect to non-trained cognitive domains. Methods: Sixty-eight children born very preterm (7-12 years) were randomly allocated to a group undertaking memory strategy training (n=23), working memory training (n=22), or a waiting control group (n=23). Neuropsychological assessment was performed before and immediately after the training or waiting period, and at a six-month follow-up. Results: In both training groups, significant improvement of different memory domains occurred immediately after training (near transfer). Improvement of non-trained arithmetic performance was observed after strategy training (far transfer). At a six-month follow-up assessment, children in both training groups demonstrated better working memory, and their parents rated their memory functions to be better than controls. Performance level before the training was negatively associated with the training gain. Conclusions: These results highlight the importance of cognitive interventions, in particular the teaching of memory strategies, in very preterm-born children at early school age to strengthen cognitive performance and prevent problems at school.
Resumo:
Spatial-numerical associations (small numbers-left/lower space and large numbers-right/upper space) are regularly found in simple number categorization tasks. These associations were taken as evidence for a spatially oriented mental number line. However, the role of spatial-numerical associations during more complex number processing, such as counting or mental arithmetic is less clear. Here, we investigated whether counting is associated with a movement along the mental number line. Participants counted aloud upward or downward in steps of 3 for 45 s while looking at a blank screen. Gaze position during upward counting shifted rightward and upward, while the pattern for downward counting was less clear. Our results, therefore, confirm the hypothesis of a movement along the mental number line for addition. We conclude that space is not only used to represent number magnitudes but also to actively operate on numbers in more complex tasks such as counting, and that the eyes reflect this spatial mental operation.
Resumo:
Four models of fission track annealing in apatite are compared with measured fission track lengths in samples from Site 800 in the East Mariana Basin, Ocean Drilling Program Leg 129, given an independently determined temperature history. The temperature history of Site 800 was calculated using a one-dimensional, compactive, conductive heat flow model assuming two end-member thermal cases: one for cooling of Jurassic ocean crust that has experienced no subsequent heating, and one for cooling of Cretaceous ocean crust. Because the samples analyzed were only shallowly buried and because the tectonic history of the area since sample deposition is simple, resolution of the temperature history is high. The maximum temperature experienced by the sampled bed is between 16°-21°C and occurs at 96 Ma; temperatures since the Cretaceous have dropped in spite of continued pelagic sediment deposition because heat flow has continued to decay exponentially and bottom-water temperatures have dropped. Fission tracks observed within apatite grains from the sampled bed are 14.6 +/- 0.1 µm (1 sigma) long. Given the proposed temperature history of the samples, one unpublished and three published models of fission track annealing predict mean track lengths from 14.8 to 15.9 µm. These models require temperatures as much as 40°C higher than the calculated paleotemperature maximum of the sampled bed to produce the same degree of track annealing. Measured and predicted values are different because annealing models are based on extrapolation of high temperature laboratory data to geologic times. The model that makes the closest prediction is based on the greatest number of experiments performed at low temperature and on an apatite having composition closest to that of the core samples.
Resumo:
Bertrand Russell dio una solución lógica general a la definición de los números caracterizando al número tres como la clase que es correspondiente a todas las clases biunívocas con los grupos de tres. Para Frege la definición del número era una de las cruces de la comprensión de la aritmética. Hegel, por su parte, bajo el impulso de la triplicidad kantiana de los juicios sintéticos, teoréticos y prácticos y la influencia de la concepción trinitaria cristiana advertía que la contraposición de los opuestos al no ser contradictoria permitía el desarrollo deviniente. La aritmología pitagórica sobre los números naturales destacó la definición del tres caracterizada por su naturaleza de mediedad. Retomando estas bases de pura inteligibilidad y las especulaciones gnósticas sobre la tríada mostraremos sus proyecciones filosófico-religiosas.
Resumo:
Eolian grain size and flux were measured on samples from 11 Arabian Sea sediment traps deployed 200-1250 km offshore. The timing of increased grain size is coincident with the onset of strong summer monsoon winds and dust storm activity over the Arabian Peninsula and Middle East. Data spanning a full annual cycle show that eolian grain size is highly correlated with barometric pressure (r=-0.91) and wind speed (r=0.84), enabling calibration of the downcore record in terms of these primary meteorological variables. Eolian flux is highly correlated with organic carbon flux (r=0.80); both increase 6-8 weeks after the grain size increase and summer monsoon onset. This lag, and the low correlation between eolian grain size and eolian flux (r=0.36), likely result from the differential sinking rates of large and small dust particles in the surface waters as well as biological scavenging associated with monsoon-induced productivity.
Resumo:
We present a novel graphical user interface program GrafLab (GRAvity Field LABoratory) for spherical harmonic synthesis (SHS) created in MATLAB®. This program allows to comfortably compute 38 various functionals of the geopotential up to ultra-high degrees and orders of spherical harmonic expansion. For the most difficult part of the SHS, namely the evaluation of the fully normalized associated Legendre functions (fnALFs), we used three different approaches according to required maximum degree: (i) the standard forward column method (up to maximum degree 1800, in some cases up to degree 2190); (ii) the modified forward column method combined with Horner's scheme (up to maximum degree 2700); (iii) the extended-range arithmetic (up to an arbitrary maximum degree). For the maximum degree 2190, the SHS with fnALFs evaluated using the extended-range arithmetic approach takes only approximately 2-3 times longer than its standard arithmetic counterpart, i.e. the standard forward column method. In the GrafLab, the functionals of the geopotential can be evaluated on a regular grid or point-wise, while the input coordinates can either be read from a data file or entered manually. For the computation on a regular grid we decided to apply the lumped coefficients approach due to significant time-efficiency of this method. Furthermore, if a full variance-covariance matrix of spherical harmonic coefficients is available, it is possible to compute the commission errors of the functionals. When computing on a regular grid, the output functionals or their commission errors may be depicted on a map using automatically selected cartographic projection.
Resumo:
Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg/m**2 per year at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane d13C from -63 per mil to -35 per mil directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.
Resumo:
Ice-rafting evidence for a '1500-year cycle' sparked considerable debate on millennial-scale climate change and the role of solar variability. Here, we reinterpret the last 70,000 years of the subpolar North Atlantic record, focusing on classic DSDP Site 609, in the context of newly available raw data, the latest radiocarbon calibration (Marine09) and ice core chronology (GICC05), and a wider range of statistical methodologies. A ~1500-year oscillation is primarily limited to the short glacial Stage 4, the age of which is derived solely from an ice flow model (ss09sea), subject to uncertainty, and offset most from the original chronology. Results from the most well-dated, younger interval suggest that the original 1500 ± 500 year cycle may actually be an admixture of the ~1000 and ~2000 cycles that are observed within the Holocene at multiple locations. In Holocene sections these variations are coherent with 14C and 10Be estimates of solar variability. Our new results suggest that the '1500-year cycle' may be a transient phenomenon whose origin could be due, for example, to ice sheet boundary conditions for the interval in which it is observed. We therefore question whether it is necessary to invoke such exotic explanations as heterodyne frequencies or combination tones to explain a phenomenon of such fleeting occurrence that is potentially an artifact of arithmetic averaging.
Resumo:
At ODP Site 983, relative geomagnetic paleointensity and planktic and benthic delta18O records have been acquired for the last 350 kyr. The mean sedimentation rate in this interval is 11.3 cm/kyr. Magnetic properties and hysteresis ratios indicate that pseudo-single domain magnetite is the remanence carrier. Volume susceptibility (kappa), anhysteretic (ARM) and isothermal (IRM) remanence values vary by a factor of 3-4, well within the criteria usually cited for paleointensity studies. Natural remanent magnetization (NRM) is normalized by ARM and IRM to acquire the paleointensity proxy. Arithmetic means of NRM/ARM and NRM/IRM, calculated for five demagnetization steps in the 25-45 mT range, constitute the relative paleointensity estimates. Some paleointensity lows (particularly those at ~40, ~120 and ~188 ka) are associated with directional excursions of the field, especially the event at ~188 ka (referred to here as the Iceland Basin Event) that constitutes a short-lived polarity reversal. For the last 200 kyr, the records can be correlated with other high-resolution paleointensity records such as those from the Labrador Sea, Mediterranean/Somali Basin and Sulu Sea, implying that the millennial scale features are globally synchronous. A labeling system for paleointensity features is proposed that ties prominent highs and lows to oxygen isotope stages.
Resumo:
The anisotropy of magnetic susceptibility documents the generation of tectonically produced fabrics in sediments that macroscopically show no evidence of this disruption. The fabric observed in initial accretion is largely produced by overprinting of the original sedimentary susceptibility anisotropy by an E-W horizontal tectonic shortening and vertical extension. The response of the sediments to stress during initial accretion is variable, particularly near the sediment surface, and appears to reflect the inhomogeneous distribution of strain rate in the overthrust sequence. The susceptibility anisotropy of sediments possessing scaly fabric is consistent with the strong orientation of Phyllosilicates seen in thin section, producing a Kmin normal to the scalyness. The slope sediments deposited on the accreted sequence are also affected by tectonic shortening. The accreted sequences at Sites 673 and 674 show a complex history of fabric modification, with previous tectonic fabrics overprinted by later fabric modifications, pointing to continued tectonic shortening during the accretion process. The form of the susceptibility anisotropy axes at Sites 673 and 674 is consistent with NESW shortening, probably reflected in the NW-SE surface expression of the out-of-sequence thrusts. The susceptibility anisotropy appears to document a downhole change in the trend of shortening from E to W at the surface to more NESW at depth, probably as a result of the obliquely trending basement ridge, the Tiburon Rise.
Resumo:
We propose an analysis for detecting procedures and goals that are deterministic (i.e., that produce at most one solution at most once),or predicates whose clause tests are mutually exclusive (which implies that at most one of their clauses will succeed) even if they are not deterministic. The analysis takes advantage of the pruning operator in order to improve the detection of mutual exclusion and determinacy. It also supports arithmetic equations and disequations, as well as equations and disequations on terms,for which we give a complete satisfiability testing algorithm, w.r.t. available type information. Information about determinacy can be used for program debugging and optimization, resource consumption and granularity control, abstraction carrying code, etc. We have implemented the analysis and integrated it in the CiaoPP system, which also infers automatically the mode and type information that our analysis takes as input. Experiments performed on this implementation show that the analysis is fairly accurate and efficient.
Resumo:
We provide a method whereby, given mode and (upper approximation) type information, we can detect procedures and goals that can be guaranteed to not fail (i.e., to produce at least one solution or not termínate). The technique is based on an intuitively very simple notion, that of a (set of) tests "covering" the type of a set of variables. We show that the problem of determining a covering is undecidable in general, and give decidability and complexity results for the Herbrand and linear arithmetic constraint systems. We give sound algorithms for determining covering that are precise and efiicient in practice. Based on this information, we show how to identify goals and procedures that can be guaranteed to not fail at runtime. Applications of such non-failure information include programming error detection, program transiormations and parallel execution optimization, avoiding speculative parallelism and estimating lower bounds on the computational costs of goals, which can be used for granularity control. Finally, we report on an implementation of our method and show that better results are obtained than with previously proposed approaches.