995 resultados para Wang, Yisong.
Resumo:
A pseudonym provides anonymity by protecting the identity of a legitimate user. A user with a pseudonym can interact with an unknown entity and be confident that his/her identity is secret even if the other entity is dishonest. In this work, we present a system that allows users to create pseudonyms from a trusted master public-secret key pair. The proposed system is based on the intractability of factoring and finding square roots of a quadratic residue modulo a composite number, where the composite number is a product of two large primes. Our proposal is different from previously published pseudonym systems, as in addition to standard notion of protecting privacy of an user, our system offers colligation between seemingly independent pseudonyms. This new property when combined with a trusted platform that stores a master secret key is extremely beneficial to an user as it offers a convenient way to generate a large number of pseudonyms using relatively small storage.
Resumo:
Recently a new human authentication scheme called PAS (predicate-based authentication service) was proposed, which does not require the assistance of any supplementary device. The main security claim of PAS is to resist passive adversaries who can observe the whole authentication session between the human user and the remote server. In this paper we show that PAS is insecure against both brute force attack and a probabilistic attack. In particular, we show that its security against brute force attack was strongly overestimated. Furthermore, we introduce a probabilistic attack, which can break part of the password even with a very small number of observed authentication sessions. Although the proposed attack cannot completely break the password, it can downgrade the PAS system to a much weaker system similar to common OTP (one-time password) systems.
Resumo:
We analyse the security of the cryptographic hash function LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By exploiting non-injectivity of some of the building primitives of LAKE, we show three different collision and near-collision attacks on the compression function. The first attack uses differences in the chaining values and the block counter and finds collisions with complexity 233. The second attack utilizes differences in the chaining values and salt and yields collisions with complexity 242. The final attack uses differences only in the chaining values to yield near-collisions with complexity 299. All our attacks are independent of the number of rounds in the compression function. We illustrate the first two attacks by showing examples of collisions and near-collisions.
Resumo:
We consider the following problem: members in a dynamic group retrieve their encrypted data from an untrusted server based on keywords and without any loss of data confidentiality and member’s privacy. In this paper, we investigate common secure indices for conjunctive keyword-based retrieval over encrypted data, and construct an efficient scheme from Wang et al. dynamic accumulator, Nyberg combinatorial accumulator and Kiayias et al. public-key encryption system. The proposed scheme is trapdoorless and keyword-field free. The security is proved under the random oracle, decisional composite residuosity and extended strong RSA assumptions.
Resumo:
Dragon stream cipher is one of the focus ciphers which have reached Phase 2 of the eSTREAMproject. In this paper, we present a new method of building a linear distinguisher for Dragon. The distinguisher is constructed by exploiting the biases of two S-boxes and the modular addition which are basic components of the nonlinear function F. The bias of the distinguisher is estimated to be around 2−75.32 which is better than the bias of the distinguisher presented by Englund and Maximov. We have shown that Dragon is distinguishable from a random cipher by using around 2150.6 keystream words and 259 memory. In addition, we present a very efficient algorithm for computing the bias of linear approximation of modular addition.
Resumo:
The cryptographic hash function literature has numerous hash function definitions and hash function requirements, and many of them disagree. This survey talks about the various definitions, and takes steps towards cleaning up the literature by explaining how the field has evolved and accurately depicting the research aims people have today.
Resumo:
This paper provides a detailed description of the current Australian e-passport implementation and makes a formal verification using model checking tools CASPER/CSP/FDR. We highlight security issues present in the current e-passport implementation and identify new threats when an e-passport system is integrated with an automated processing systems like SmartGate. Because the current e-passport specification does not provide adequate security goals, to perform a rational security analysis we identify and describe a set of security goals for evaluation of e-passport protocols. Our analysis confirms existing security issues that were previously informally identified and presents weaknesses that exists in the current e-passport implementation.
Resumo:
Implementation of an electronic tendering (e-tendering) systems requires careful attention to the needs of the system and its various participants. Fairness in an e-tendering is of utmost importance. Current proposals and implementations do not provide fairness and thus, are vulnerable to collusion and favourism. Dishonest participants, either the principal or tenderer may collude to alter or view competing tenders which would give the favoured tenderer a greater chance of winning the contract. This paper proposes an e-tendering system that is secure and fair to all participants. We employ the techniques of anonymous token system along with signed commitment approach to achieve a publicly verifiable fair e-tendering protocol. We also provide an analysis of the protocol that confirms the security of our proposal against security goals for an e-tendering system.
Resumo:
The M¨obius transform of Boolean functions is often involved in cryptographic design and analysis. As studied previously, a Boolean function f is said to be coincident if it is identical with its M¨obius transform fμ, i.e., f = fμ...
Resumo:
Titanium oxide films with trilayer structure grown on fluorine doped tin oxide substrate were prepared from one-step hydrothermal process. The trilayer structure consists of microflowers, nanorod array and compact nanoparticulates, which is expected to possess the merits of good light harvesting, a high electron transport rate, while avoiding the issues of electron shunting. The photovoltaic performance was comprehensively studied and a 60% enhancement in short circuit photocurrent density was found from microflowers contribution as a light scattering layer. This unique trilayer structure exhibits great potential application in future dye-sensitized solar cells.
Resumo:
Suppose two parties, holding vectors A = (a 1,a 2,...,a n ) and B = (b 1,b 2,...,b n ) respectively, wish to know whether a i > b i for all i, without disclosing any private input. This problem is called the vector dominance problem, and is closely related to the well-studied problem for securely comparing two numbers (Yao’s millionaires problem). In this paper, we propose several protocols for this problem, which improve upon existing protocols on round complexity or communication/computation complexity.
Resumo:
We present efficient protocols for private set disjointness tests. We start from an intuition of our protocols that applies Sylvester matrices. Unfortunately, this simple construction is insecure as it reveals information about the cardinality of the intersection. More specifically, it discloses its lower bound. By using the Lagrange interpolation we provide a protocol for the honest-but-curious case without revealing any additional information. Finally, we describe a protocol that is secure against malicious adversaries. The protocol applies a verification test to detect misbehaving participants. Both protocols require O(1) rounds of communication. Our protocols are more efficient than the previous protocols in terms of communication and computation overhead. Unlike previous protocols whose security relies on computational assumptions, our protocols provide information theoretic security. To our knowledge, our protocols are first ones that have been designed without a generic secure function evaluation. More importantly, they are the most efficient protocols for private disjointness tests for the malicious adversary case.
Resumo:
A multi-secret sharing scheme allows several secrets to be shared amongst a group of participants. In 2005, Shao and Cao developed a verifiable multi-secret sharing scheme where each participant’s share can be used several times which reduces the number of interactions between the dealer and the group members. In addition some secrets may require a higher security level than others involving the need for different threshold values. Recently Chan and Chang designed such a scheme but their construction only allows a single secret to be shared per threshold value. In this article we combine the previous two approaches to design a multiple time verifiable multi-secret sharing scheme where several secrets can be shared for each threshold value. Since the running time is an important factor for practical applications, we will provide a complexity comparison of our combined approach with respect to the previous schemes.
Resumo:
The first generation e-passport standard is proven to be insecure and prone to various attacks. To strengthen, the European Union (EU) has proposed an Extended Access Control (EAC) mechanism for e-passports that intends to provide better security in protecting biometric information of the e-passport bearer. But, our analysis shows, the EU proposal fails to address many security and privacy issues that are paramount in implementing a strong security mechanism. In this paper we propose an on-line authentication mechanism for electronic passports that addresses the weakness in existing implementations, of both The International Civil Aviation Organisation (ICAO) and EU. Our proposal utilises ICAO PKI implementation, thus requiring very little modifications to the existing infrastructure which is already well established.
Resumo:
Motivated by the need of private set operations in a distributed environment, we extend the two-party private matching problem proposed by Freedman, Nissim and Pinkas (FNP) at Eurocrypt’04 to the distributed setting. By using a secret sharing scheme, we provide a distributed solution of the FNP private matching called the distributed private matching. In our distributed private matching scheme, we use a polynomial to represent one party’s dataset as in FNP and then distribute the polynomial to multiple servers. We extend our solution to the distributed set intersection and the cardinality of the intersection, and further we show how to apply the distributed private matching in order to compute distributed subset relation. Our work extends the primitives of private matching and set intersection by Freedman et al. Our distributed construction might be of great value when the dataset is outsourced and its privacy is the main concern. In such cases, our distributed solutions keep the utility of those set operations while the dataset privacy is not compromised. Comparing with previous works, we achieve a more efficient solution in terms of computation. All protocols constructed in this paper are provably secure against a semi-honest adversary under the Decisional Diffie-Hellman assumption.