975 resultados para Vasoactive Metabolites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Carnitine is a key molecule in energy metabolism that helps transport activated fatty acids into the mitochondria. Its homeostasis is achieved through oral intake, renal reabsorption and de novo biosynthesis. Unlike dietary intake and renal reabsorption, the importance of de novo biosynthesis pathway in carnitine homeostasis remains unclear, due to lack of animal models and description of a single patient defective in this pathway. CASE PRESENTATION: We identified by array comparative genomic hybridization a 42 months-old girl homozygote for a 221 Kb interstitial deletions at 11p14.2, that overlaps the genes encoding Fibin and butyrobetaine-gamma 2-oxoglutarate dioxygenase 1 (BBOX1), an enzyme essential for the biosynthesis of carnitine de novo. She presented microcephaly, speech delay, growth retardation and minor facial anomalies. The levels of almost all evaluated metabolites were normal. Her serum level of free carnitine was at the lower limit of the reference range, while her acylcarnitine to free carnitine ratio was normal. CONCLUSIONS: We present an individual with a completely defective carnitine de novo biosynthesis. This condition results in mildly decreased free carnitine level, but not in clinical manifestations characteristic of carnitine deficiency disorders, suggesting that dietary carnitine intake and renal reabsorption are sufficient to carnitine homeostasis. Our results also demonstrate that haploinsufficiency of BBOX1 and/or Fibin is not associated with Primrose syndrome as previously suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infusions of Aspidosperma nitidum (Apocynaceae) wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: There is high interindividual variability in the activity of drug-metabolizing enzymes catalysing the oxidation of oxycodone [cytochrome P450 (CYP) 2D6 and 3A], due to genetic polymorphisms and/or drug-drug interactions. The effects of CYP2D6 and/or CYP3A activity modulation on the pharmacokinetics of oxycodone remains poorly explored. EXPERIMENTAL APPROACH: A randomized crossover double-blind placebo-controlled study was performed with 10 healthy volunteers genotyped for CYP2D6 [six extensive (EM), two deficient (PM/IM) and two ultrarapid metabolizers (UM)]. The volunteers randomly received on five different occasions: oxycodone 0.2 mg x kg(-1) and placebo; oxycodone and quinidine (CYP2D6 inhibitor); oxycodone and ketoconazole (CYP3A inhibitor); oxycodone and quinidine+ketoconazole; placebo. Blood samples for plasma concentrations of oxycodone and metabolites (oxymorphone, noroxycodone and noroxymorphone) were collected for 24 h after dosing. Phenotyping for CYP2D6 (with dextromethorphan) and CYP3A (with midazolam) were assessed at each session. KEY RESULTS: CYP2D6 activity was correlated with oxymorphone and noroxymorphone AUCs and C(max) (-0.71 < Spearman correlation coefficient rhos < -0.92). Oxymorphone C(max) was 62% and 75% lower in PM than EM and UM. Noroxymorphone C(max) reduction was even more pronounced (90%). In UM, oxymorphone and noroxymorphone concentrations increased whereas noroxycodone exposure was halved. Blocking CYP2D6 (with quinidine) reduced oxymorphone and noroxymorphone C(max) by 40% and 80%, and increased noroxycodone AUC(infinity) by 70%. Blocking CYP3A4 (with ketoconazole) tripled oxymorphone AUC(infinity) and reduced noroxycodone and noroxymorphone AUCs by 80%. Shunting to CYP2D6 pathway was observed after CYP3A4 inhibition. CONCLUSIONS AND IMPLICATIONS: Drug-drug interactions via CYP2D6 and CYP3A affected oxycodone pharmacokinetics and its magnitude depended on CYP2D6 genotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host’s metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to their performance enhancing properties, use of anabolic steroids (e.g. testosterone, nandrolone, etc.) is banned in elite sports. Therefore, doping control laboratories accredited by the World Anti-Doping Agency (WADA) screen among others for these prohibited substances in urine. It is particularly challenging to detect misuse with naturally occurring anabolic steroids such as testosterone (T), which is a popular ergogenic agent in sports and society. To screen for misuse with these compounds, drug testing laboratories monitor the urinary concentrations of endogenous steroid metabolites and their ratios, which constitute the steroid profile and compare them with reference ranges to detect unnaturally high values. However, the interpretation of the steroid profile is difficult due to large inter-individual variances, various confounding factors and different endogenous steroids marketed that influence the steroid profile in various ways. A support vector machine (SVM) algorithm was developed to statistically evaluate urinary steroid profiles composed of an extended range of steroid profile metabolites. This model makes the interpretation of the analytical data in the quest for deviating steroid profiles feasible and shows its versatility towards different kinds of misused endogenous steroids. The SVM model outperforms the current biomarkers with respect to detection sensitivity and accuracy, particularly when it is coupled to individual data as stored in the Athlete Biological Passport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon isotope ratio of androgens in urine specimens is routinely determined to exclude an abuse of testosterone or testosterone prohormones by athletes. Increasing application of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) in the last years for target and systematic investigations on samples has resulted in the demand for rapid sample throughput as well as high selectivity in the extraction process particularly in the case of conspicuous samples. For that purpose, we present herein the complimentary use of an SPE-based assay and an HPLC fractionation method as a two-stage strategy for the isolation of testosterone metabolites and endogenous reference compounds prior to GC/C/IRMS analyses. Assays validation demonstrated acceptable performance in terms of intermediate precision (range: 0.1-0.4 per thousand) and Bland-Altman analyses revealed no significant bias (0.2 per thousand). For further validation of this two-stage analyses strategy, all the specimens (n=124) collected during a major sport event were processed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aiming to identify new sources of bioactive secondary metabolites, we isolated 82 endophytic fungi from stems and barks of the native Brazilian tree Caesalpinia echinata Lam. (Fabaceae). We tested their ethyl acetate extracts in several in vitro assays. The organic extracts from three isolates showed antibacterial activity against Staphylococcus aureus and Escherichia coli [minimal inhibitory concentration (MIC) 32-64 μg/mL]. One isolate inhibited the growth of Salmonella typhimurium (MIC 64 μg/mL) and two isolates inhibited the growth of Klebsiella oxytoca (MIC 64 μg/mL), Candida albicans and Candida tropicalis (MIC 64-128 μg/mL). Fourteen extracts at a concentration of 20 μg/mL showed antitumour activities against human breast cancer and human renal cancer cells, while two isolates showed anti-tumour activities against human melanoma cancer cells. Six extracts were able to reduce the proliferation of human peripheral blood mononuclear cells, indicating some degree of selective toxicity. Four isolates were able to inhibit Leishmania (Leishmania) amazonensis and one isolate inhibited Trypanosoma cruzi by at least 40% at 20 μg/mL. The trypanocidal extract obtained from Fusarium sp. [KF611679] culture was subjected to bioguided fractionation, which revealed beauvericin as the compound responsible for the observed toxicity of Fusarium sp. to T. cruzi. This depsipeptide showed a half maximal inhibitory concentration of 1.9 μg/mL (2.43 μM) in a T. cruzi cellular culture assay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: There is high interindividual variability in the activity of drug-metabolizing enzymes catalysing the oxidation of oxycodone [cytochrome P450 (CYP) 2D6 and 3A], due to genetic polymorphisms and/or drug-drug interactions. The effects of CYP2D6 and/or CYP3A activity modulation on the pharmacokinetics of oxycodone remains poorly explored. Experimental approach: A randomized crossover double-blind placebo-controlled study was performed with 10 healthy volunteers genotyped for CYP2D6 [six extensive (EM), two deficient (PM/IM) and two ultrarapid metabolizers (UM)]. The volunteers randomly received on five different occasions: oxycodone 0.2 mg·kg−1 and placebo; oxycodone and quinidine (CYP2D6 inhibitor); oxycodone and ketoconazole (CYP3A inhibitor); oxycodone and quinidine+ketoconazole; placebo. Blood samples for plasma concentrations of oxycodone and metabolites (oxymorphone, noroxycodone and noroxymorphone) were collected for 24 h after dosing. Phenotyping for CYP2D6 (with dextromethorphan) and CYP3A (with midazolam) were assessed at each session. Key results: CYP2D6 activity was correlated with oxymorphone and noroxymorphone AUCs and Cmax (−0.71 < Spearman correlation coefficient ρs < −0.92). Oxymorphone Cmax was 62% and 75% lower in PM than EM and UM. Noroxymorphone Cmax reduction was even more pronounced (90%). In UM, oxymorphone and noroxymorphone concentrations increased whereas noroxycodone exposure was halved. Blocking CYP2D6 (with quinidine) reduced oxymorphone and noroxymorphone Cmax by 40% and 80%, and increased noroxycodone AUC∞ by 70%. Blocking CYP3A4 (with ketoconazole) tripled oxymorphone AUC∞ and reduced noroxycodone and noroxymorphone AUCs by 80%. Shunting to CYP2D6 pathway was observed after CYP3A4 inhibition. Conclusions and implications: Drug-drug interactions via CYP2D6 and CYP3A affected oxycodone pharmacokinetics and its magnitude depended on CYP2D6 genotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

19-Norandrosterone (19-NA) as its glucuronide derivative is the target metabolite in anti-doping testing to reveal an abuse of nandrolone or nandrolone prohormone. To provide further evidence of a doping with these steroids, the sulfoconjugate form of 19-norandrosterone in human urine might be monitored as well. In the present study, the profiling of sulfate and glucuronide derivatives of 19-norandrosterone together with 19-noretiocholanolone (19-NE) were assessed in the spot urines of 8 male subjects, collected after administration of 19-nor-4-androstenedione (100mg). An LC/MS/MS assay was employed for the direct quantification of sulfoconjugates, whereas a standard GC/MS method was applied for the assessment of glucuroconjugates in urine specimens. Although the 19-NA glucuronide derivative was always the most prominent at the excretion peak, inter-individual variability of the excretion patterns was observed for both conjugate forms of 19-NA and 19-NE. The ratio between the glucuro- and sulfoconjugate derivatives of 19-NA and 19-NE could not discriminate the endogenous versus the exogenous origin of the parent compound. However, after ingestion of 100mg 19-nor-4-androstenedione, it was observed in the urine specimens that the sulfate conjugates of 19-NA was detectable over a longer period of time with respect to the other metabolites. These findings indicate that more interest shall be given to this type of conjugation to deter a potential doping with norsteroids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: In forensic toxicology, cocaine is better known for its powerful stimulating effects of nervous system and its high potential for recreational abuse, than for his therapeutic use. However, cocaine is still use as a topical anesthetic and peripheral vasoconstrictor in surgeries of eye, ear, nose and throat. Last decade, an increase of the presence of cocaine and metabolites in blood samples of drivers suspected to drive under the influence of drugs (DUID) was observed in Switzerland (Augsburger et al., Forensic Sci Int 153 (2005) 11-15; Senna et al., Forensic Sci Int 198 (2010) 11-16). Observed blood concentration ranges of cocaine and benzoylecgonine were 10-925 μg/L and 20-5200 μg/L, respectively. Since 2005, zero-tolerance approach was introduced in the Swiss legislation for different substances, especially cocaine (analytical cutoff: 15 μg/L). Thus, the interpretation often amounts to determine if the concentration is situated above or under the limit. However, it is important for the interpretation to take into account the context and to be critical with the obtained results, at the risk of ending in erroneous conclusions. Methods: Systematical toxicological analyses were performed on blood and urine, if available, for 5 DUID cases, as already published (Augsburger et al., Forensic Sci Int 153 (2005)). Positive results were confirmed and drugs were quantified in biological samples by GCMS, GC-MS/MS or LC-MS/MS. Results: Administration of cocaine after traffic accident was identified in five cases. All people were admitted to the emergency room because of severe trauma. Maxillofacial surgery was done shortly after admission to the emergency room, involving use of nasal application of cocaine (swab). For all cases, use of cocaine swab was not mentioned in the document filled by the police and by medical staff requested for blood and urine sampling. The information was obtained retrospectively after consultation of the medical records, without precise indication of the application time or dose. Case 1. A 83-year old man (pedestrian) was hit by a car. Blood (+11h after the accident): cocaine (16 μg/L), benzoylecgonine (370 μg/L). Urine: cocaine (1700 μg/L), benzoylecgonine (560 μg/L). Case 2. A 84-year old woman (pedestrian) was hit by a car. Blood (+1.5h after the accident): cocaine (230 μg/L), benzoylecgonine (370 μg/L). Urine was not available. Hair (+4 months after the accident): segment 1 (0-2 cm), cocaine not detected; segment 2 (2-4 cm), cocaine: <0.5 ng/mg. Case 3. A 66-year old man was involved in a car/car accident. He died 2 hours and 5 minutes after the crash. Blood (+1.5h after the accident): cocaine and metabolites not detected. Blood (+2h after the accident): cocaine (1750 μg/L), benzoylecgonine (460 μg/L). Blood (post-mortem): cocaine (370 μg/L), benzoylecgonine (200 μg/L). Urine (+1.5h after the accident): cocaine not detected. Case 4. A 57-year old woman on a motor scooter was hit by a car. She died 2 hours and 10 minutes after the crash. Blood (+0.5h after the accident): cocaine and metabolites not detected. Urine (post-mortem): cocaine (<20 μg/L), benzoylecgonine (120 μg/L). Case 5. A 30-year old man was involved in a car accident. Blood (+4h after the accident): cocaine (29 μg/L), benzoylecgonine (< 20 μg/L). Urine (+4h after the accident): cocaine and metabolites not detected. Ethanol (1,32 g/kg) and cannabinoids (THC (2,0 μg/L), THCCOOH (38 μg/L)) were also detected in blood. Conclusion: To our knowledge, this is the first description of DUID cases involving therapeutic use of cocaine after an accident. These results indicate that even if a per se law is effective for prosecution case of DUID, a critical interpretation of the results is always needed, especially if a medical intervention occurs after an accident.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Hepatocellular carcinoma (HCC), the most prevalent form of liver cancer, is difficult to diagnose and has limited treatment options with a low survival rate. Aside from a few key risk factors, such as hepatitis, high alcohol consumption, smoking, obesity, and diabetes, there is incomplete etiologic understanding of the disease and little progress in identification of early risk biomarkers. METHODS To address these aspects, an untargeted nuclear magnetic resonance metabolomic approach was applied to pre-diagnostic serum samples obtained from first incident, primary HCC cases (n = 114) and matched controls (n = 222) identified from amongst the participants of a large European prospective cohort. RESULTS A metabolic pattern associated with HCC risk comprised of perturbations in fatty acid oxidation and amino acid, lipid, and carbohydrate metabolism was observed. Sixteen metabolites of either endogenous or exogenous origin were found to be significantly associated with HCC risk. The influence of hepatitis infection and potential liver damage was assessed, and further analyses were made to distinguish patterns of early or later diagnosis. CONCLUSION Our results show clear metabolic alterations from early stages of HCC development with application for better etiologic understanding, prevention, and early detection of this increasingly common cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its alpha subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1alpha was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1alpha stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1alpha. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1alpha. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vestibular migraine (VM) is a common disorder in which genetic, epigenetic, and environmental factors probably contribute to its development. The pathophysiology of VM is unknown; nevertheless in the last few years, several studies are contributing to understand the neurophysiological pathways involved in VM. The current hypotheses are mostly based on the knowledge of migraine itself. The evidence of trigeminal innervation of the labyrinth vessels and the localization of vasoactive neuropeptides in the perivascular afferent terminals of these trigeminal fibers support the involvement of the trigemino-vascular system. The neurogenic inflammation triggered by activation of the trigeminal-vestibulocochlear reflex, with the subsequent inner ear plasma protein extravasation and the release of inflammatory mediators, can contribute to a sustained activation and sensitization of the trigeminal primary afferent neurons explaining VM symptoms. The reciprocal connections between brainstem vestibular nuclei and the structures that modulate trigeminal nociceptive inputs (rostral ventromedial medulla, ventrolateral periaqueductal gray, locus coeruleus, and nucleus raphe magnus) are critical to understand the pathophysiology of VM. Although cortical spreading depression can affect cortical areas involved in processing vestibular information, functional neuroimaging techniques suggest a dysmodulation in the multimodal sensory integration and processing of vestibular and nociceptive information, resulting from a vestibulo-thalamo-cortical dysfunction, as the pathogenic mechanism underlying VM. The elevated prevalence of VM suggests that multiple functional variants may confer a genetic susceptibility leading to a dysregulation of excitatory-inhibitory balance in brain structures involved in the processing of sensory information, vestibular inputs, and pain. The interactions among several functional and structural neural networks could explain the pathogenic mechanisms of VM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gut microbiota has recently been proposed as a crucial environmental factor in the development of metabolic diseases such as obesity and type 2 diabetes, mainly due to its contribution in the modulation of several processes including host energy metabolism, gut epithelial permeability, gut peptide hormone secretion, and host inflammatory state. Since the symbiotic interaction between the gut microbiota and the host is essentially reflected in specific metabolic signatures, much expectation is placed on the application of metabolomic approaches to unveil the key mechanisms linking the gut microbiota composition and activity with disease development. The present review aims to summarize the gut microbial-host co-metabolites identified so far by targeted and untargeted metabolomic studies in humans, in association with impaired glucose homeostasis and/or obesity. An alteration of the co-metabolism of bile acids, branched fatty acids, choline, vitamins (i.e., niacin), purines, and phenolic compounds has been associated so far with the obese or diabese phenotype, in respect to healthy controls. Furthermore, anti-diabetic treatments such as metformin and sulfonylurea have been observed to modulate the gut microbiota or at least their metabolic profiles, thereby potentially affecting insulin resistance through indirect mechanisms still unknown. Despite the scarcity of the metabolomic studies currently available on the microbial-host crosstalk, the data-driven results largely confirmed findings independently obtained from in vitro and animal model studies, putting forward the mechanisms underlying the implication of a dysfunctional gut microbiota in the development of metabolic disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioactive small molecules, such as drugs or metabolites, bind to proteins or other macro-molecular targets to modulate their activity, which in turn results in the observed phenotypic effects. For this reason, mapping the targets of bioactive small molecules is a key step toward unraveling the molecular mechanisms underlying their bioactivity and predicting potential side effects or cross-reactivity. Recently, large datasets of protein-small molecule interactions have become available, providing a unique source of information for the development of knowledge-based approaches to computationally identify new targets for uncharacterized molecules or secondary targets for known molecules. Here, we introduce SwissTargetPrediction, a web server to accurately predict the targets of bioactive molecules based on a combination of 2D and 3D similarity measures with known ligands. Predictions can be carried out in five different organisms, and mapping predictions by homology within and between different species is enabled for close paralogs and orthologs. SwissTargetPrediction is accessible free of charge and without login requirement at http://www.swisstargetprediction.ch.