925 resultados para Travel Time Prediction
Resumo:
Alpine heavy precipitation events often affect small catchments, although the circulation pattern leading to the event extends over the entire North Atlantic. The various scale interactions involved are particularly challenging for the numerical weather prediction of such events. Unlike previous studies focusing on the southern Alps, here a comprehensive study of a heavy precipitation event in the northern Alps in October 2011 is presented with particular focus on the role of the large-scale circulation in the North Atlantic/European region. During the event exceptionally high amounts of total precipitable water occurred in and north of the Alps. This moisture was initially transported along the flanks of a blocking ridge over the North Atlantic. Subsequently, strong and persistent northerly flow established at the upstream flank of a trough over Europe and steered the moisture towards the northern Alps. Lagrangian diagnostics reveal that a large fraction of the moisture emerged from the West African coast where a subtropical upper-level cut-off low served as an important moisture collector. Wave activity flux diagnostics show that the ridge was initiated as part of a low-frequency, large-scale Rossby wave train while convergence of fast transients helped to amplify it locally in the North Atlantic. A novel diagnostic for advective potential vorticity tendencies sheds more light on this amplification and further emphasizes the role of the ridge in amplifying the trough over Europe. Operational forecasts misrepresented the amplitude and orientation of this trough. For the first time, this study documents an important pathway for northern Alpine flooding, in which the interaction of synoptic-scale to large-scale weather systems and of long-range moisture transport from the Tropics are dominant. Moreover, the trapping of moisture in a subtropical cut-off near the West African coast is found to be a crucial precursor to the observed European high-impact weather.
Resumo:
Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.
Resumo:
Seizure freedom in patients suffering from pharmacoresistant epilepsies is still not achieved in 20–30% of all cases. Hence, current therapies need to be improved, based on a more complete understanding of ictogenesis. In this respect, the analysis of functional networks derived from intracranial electroencephalographic (iEEG) data has recently become a standard tool. Functional networks however are purely descriptive models and thus are conceptually unable to predict fundamental features of iEEG time-series, e.g., in the context of therapeutical brain stimulation. In this paper we present some first steps towards overcoming the limitations of functional network analysis, by showing that its results are implied by a simple predictive model of time-sliced iEEG time-series. More specifically, we learn distinct graphical models (so called Chow–Liu (CL) trees) as models for the spatial dependencies between iEEG signals. Bayesian inference is then applied to the CL trees, allowing for an analytic derivation/prediction of functional networks, based on thresholding of the absolute value Pearson correlation coefficient (CC) matrix. Using various measures, the thus obtained networks are then compared to those which were derived in the classical way from the empirical CC-matrix. In the high threshold limit we find (a) an excellent agreement between the two networks and (b) key features of periictal networks as they have previously been reported in the literature. Apart from functional networks, both matrices are also compared element-wise, showing that the CL approach leads to a sparse representation, by setting small correlations to values close to zero while preserving the larger ones. Overall, this paper shows the validity of CL-trees as simple, spatially predictive models for periictal iEEG data. Moreover, we suggest straightforward generalizations of the CL-approach for modeling also the temporal features of iEEG signals.
Resumo:
Recently telecommunication industry benefits from infrastructure sharing, one of the most fundamental enablers of cloud computing, leading to emergence of the Mobile Virtual Network Operator (MVNO) concept. The most momentous intents by this approach are the support of on-demand provisioning and elasticity of virtualized mobile network components, based on data traffic load. To realize it, during operation and management procedures, the virtualized services need be triggered in order to scale-up/down or scale-out/in an instance. In this paper we propose an architecture called MOBaaS (Mobility and Bandwidth Availability Prediction as a Service), comprising two algorithms in order to predict user(s) mobility and network link bandwidth availability, that can be implemented in cloud based mobile network structure and can be used as a support service by any other virtualized mobile network services. MOBaaS can provide prediction information in order to generate required triggers for on-demand deploying, provisioning, disposing of virtualized network components. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operation, as well. Through the preliminary experiments with the prototype implementation on the OpenStack platform, we evaluated and confirmed the feasibility and the effectiveness of the prediction algorithms and the proposed architecture.
Resumo:
Location prediction has attracted a significant amount of research effort. Being able to predict users’ movement benefits a wide range of communication systems, including location-based service/applications, mobile access control, mobile QoS provision, and resource management for mobile computation and storage management. In this demo, we present MOBaaS, which is a cloudified Mobility and Bandwidth prediction services that can be instantiated, deployed, and disposed on-demand. Mobility prediction of MOBaaS provides location predictions of a single/group user equipments (UEs) in a future moment. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operations. We demonstrate an example of real-time mobility prediction service deployment running on OpenStack platform, and the potential benefits it bring to other invoking services.
Resumo:
High-resolution, ground-based and independent observations including co-located wind radiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulation models and data-constrained assimilation systems in the middle atmosphere at northern hemisphere midlatitudes. Systematic comparisons between observations, the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses including the recent Integrated Forecast System cycles 38r1 and 38r2, the NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalyses, and the free-running climate Max Planck Institute–Earth System Model–Low Resolution (MPI-ESM-LR) are carried out in both temporal and spectral dom ains. We find that ECMWF and MERRA are broadly consistent with lidar and wind radiometer measurements up to ~40 km. For both temperature and horizontal wind components, deviations increase with altitude as the assimilated observations become sparser. Between 40 and 60 km altitude, the standard deviation of the mean difference exceeds 5 K for the temperature and 20 m/s for the zonal wind. The largest deviations are observed in winter when the variability from large-scale planetary waves dominates. Between lidar data and MPI-ESM-LR, there is an overall agreement in spectral amplitude down to 15–20 days. At shorter time scales, the variability is lacking in the model by ~10 dB. Infrasound observations indicate a general good agreement with ECWMF wind and temperature products. As such, this study demonstrates the potential of the infrastructure of the Atmospheric Dynamics Research Infrastructure in Europe project that integrates various measurements and provides a quantitative understanding of stratosphere-troposphere dynamical coupling for numerical weather prediction applications.
Resumo:
An accurate detection of individuals at clinical high risk (CHR) for psychosis is a prerequisite for effective preventive interventions. Several psychometric interviews are available, but their prognostic accuracy is unknown. We conducted a prognostic accuracy meta-analysis of psychometric interviews used to examine referrals to high risk services. The index test was an established CHR psychometric instrument used to identify subjects with and without CHR (CHR+ and CHR-). The reference index was psychosis onset over time in both CHR+ and CHR- subjects. Data were analyzed with MIDAS (STATA13). Area under the curve (AUC), summary receiver operating characteristic curves, quality assessment, likelihood ratios, Fagan's nomogram and probability modified plots were computed. Eleven independent studies were included, with a total of 2,519 help-seeking, predominately adult subjects (CHR+: N=1,359; CHR-: N=1,160) referred to high risk services. The mean follow-up duration was 38 months. The AUC was excellent (0.90; 95% CI: 0.87-0.93), and comparable to other tests in preventive medicine, suggesting clinical utility in subjects referred to high risk services. Meta-regression analyses revealed an effect for exposure to antipsychotics and no effects for type of instrument, age, gender, follow-up time, sample size, quality assessment, proportion of CHR+ subjects in the total sample. Fagan's nomogram indicated a low positive predictive value (5.74%) in the general non-help-seeking population. Albeit the clear need to further improve prediction of psychosis, these findings support the use of psychometric prognostic interviews for CHR as clinical tools for an indicated prevention in subjects seeking help at high risk services worldwide.
Resumo:
Trabecular bone score (TBS) is a grey-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a BMD-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables and outcomes during follow up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% CI: 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR 1.32, 95%CI: 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95%CI: 1.65, 1.87 vs. 1.70, 95%CI: 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. This article is protected by copyright. All rights reserved.
Resumo:
A discussion of nonlinear dynamics, demonstrated by the familiar automobile, is followed by the development of a systematic method of analysis of a possibly nonlinear time series using difference equations in the general state-space format. This format allows recursive state-dependent parameter estimation after each observation thereby revealing the dynamics inherent in the system in combination with random external perturbations.^ The one-step ahead prediction errors at each time period, transformed to have constant variance, and the estimated parametric sequences provide the information to (1) formally test whether time series observations y(,t) are some linear function of random errors (ELEM)(,s), for some t and s, or whether the series would more appropriately be described by a nonlinear model such as bilinear, exponential, threshold, etc., (2) formally test whether a statistically significant change has occurred in structure/level either historically or as it occurs, (3) forecast nonlinear system with a new and innovative (but very old numerical) technique utilizing rational functions to extrapolate individual parameters as smooth functions of time which are then combined to obtain the forecast of y and (4) suggest a measure of resilience, i.e. how much perturbation a structure/level can tolerate, whether internal or external to the system, and remain statistically unchanged. Although similar to one-step control, this provides a less rigid way to think about changes affecting social systems.^ Applications consisting of the analysis of some familiar and some simulated series demonstrate the procedure. Empirical results suggest that this state-space or modified augmented Kalman filter may provide interesting ways to identify particular kinds of nonlinearities as they occur in structural change via the state trajectory.^ A computational flow-chart detailing computations and software input and output is provided in the body of the text. IBM Advanced BASIC program listings to accomplish most of the analysis are provided in the appendix. ^
Resumo:
Sepsis is a significant cause for multiple organ failure and death in the burn patient, yet identification in this population is confounded by chronic hypermetabolism and impaired immune function. The purpose of this study was twofold: 1) determine the ability of the systemic inflammatory response syndrome (SIRS) and American Burn Association (ABA) criteria to predict sepsis in the burn patient; and 2) develop a model representing the best combination of clinical predictors associated with sepsis in the same population. A retrospective, case-controlled, within-patient comparison of burn patients admitted to a single intensive care unit (ICU) was conducted for the period January 2005 to September 2010. Blood culture results were paired with clinical condition: "positive-sick"; "negative-sick", and "screening-not sick". Data were collected for the 72 hours prior to each blood culture. The most significant predictors were evaluated using logistic regression, Generalized Estimating Equations (GEE) and ROC area under the curve (AUC) analyses to assess model predictive ability. Bootstrapping methods were employed to evaluate potential model over-fitting. Fifty-nine subjects were included, representing 177 culture periods. SIRS criteria were not found to be associated with culture type, with an average of 98% of subjects meeting criteria in the 3 days prior. ABA sepsis criteria were significantly different among culture type only on the day prior (p = 0.004). The variables identified for the model included: heart rate>130 beats/min, mean blood pressure<60 mmHg, base deficit<-6 mEq/L, temperature>36°C, use of vasoactive medications, and glucose>150 mg/d1. The model was significant in predicting "positive culture-sick" and sepsis state, with AUC of 0.775 (p < 0.001) and 0.714 (p < .001), respectively; comparatively, the ABA criteria AUC was 0.619 (p = 0.028) and 0.597 (p = .035), respectively. SIRS criteria are not appropriate for identifying sepsis in the burn population. The ABA criteria perform better, but only for the day prior to positive blood culture results. The time period useful to diagnose sepsis using clinical criteria may be limited to 24 hours. A combination of predictors is superior to individual variable trends, yet algorithms or computer support will be necessary for the clinician to find such models useful. ^
Resumo:
The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.
Resumo:
During the summer of 2003, a ground-penetrating radar survey around the North Greenland Icecore Project (NorthGRIP) deep ice-core drilling site (75°06' N, 42°20' W; 2957 m a.s.l.) was carried out using a shielded 250 MHz radar system. The drill site is located on an ice divide, roughly 300 km north-northwest of the summit of the Greenland ice sheet. More than 430 km of profiles were measured, covering a 10 km by 10 km area, with a grid centered on the drilling location, and eight profiles extending beyond this grid. Seven internal horizons within the upper 120 m of the ice sheet were continuously tracked, containing the last 400 years of accumulation history. Based on the age-depth and density-depth distribution of the deep core, the internal layers have been dated and the regional and temporal distribution of accumulation rate in the vicinity of NorthGRIP has been derived. The distribution of accumulation shows a relatively smoothly increasing trend from east to west from 145 kg/m**2/a to 200 kg/m**2/a over a distance of 50 km across the ice divide. The general trend is overlain by small-scale variations on the order of 2.5 kg/m**2/a/km, i.e. around 1.5% of the accumulation mean. The temporal variations of the seven periods defined by the seven tracked isochrones are on the order of +-4% of the mean of the last 400 years, i.e. at NorthGRIP ±7 kg/m**2/a. If the regional accumulation pattern has been stable for the last several thousand years during the Holocene, and ice flow has been comparable to today, advective effects along the particle trajectory upstream of NorthGRIP do not have a significant effect on the interpretation of climatically induced changes in accumulation rates derived from the deep ice core over the last 10 kyr.
Resumo:
We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.
Resumo:
Sediment samples and hydrographic conditions were studied at 28 stations around Iceland. At these sites, Conductivity-Temperature-Depth (CTD) casts were conducted to collect hydrographic data and multicorer casts were conductd to collect data on sediment characteristics including grain size distribution, carbon and nitrogen concentration, and chloroplastic pigment concentration. A total of 14 environmental predictors were used to model sediment characteristics around Iceland on regional geographic space. For these, two approaches were used: Multivariate Adaptation Regression Splines (MARS) and randomForest regression models. RandomForest outperformed MARS in predicting grain size distribution. MARS models had a greater tendency to over- and underpredict sediment values in areas outside the environmental envelope defined by the training dataset. We provide first GIS layers on sediment characteristics around Iceland, that can be used as predictors in future models. Although models performed well, more samples, especially from the shelf areas, will be needed to improve the models in future.