866 resultados para Total phenolic compounds


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A qualidade dos produtos alimentares e a sua influência sobre a nutrição e a saúde humana tem vindo a merecer um lugar de destaque na comunidade científica. O conceito de alimento funcional tem adquirido grande importância hoje em dia, em particular os alimentos com compostos bioactivos. O Cardo (Cynara cardunculus L.) é uma planta herbácea originária da região mediterrânea usada essencialmente na coagulação do leite, e por muitos considerada um medicamento popular, devido aos seus efeitos terapêuticos. Este trabalho teve como objectivo estudar o efeito de diferentes condições de secagem da flor de cardo, na composição em ácidos fenólicos, bem como em polissacarídeos. Era ainda objectivo tentar identificar possíveis compostos que pudessem ser utilizados como marcadores de autenticidade do queijo da serra. Neste trabalho foi usada uma amostra de flor de cardo liofilizado e três amostras secadas, a diferentes temperaturas (40, 50 e 60ºC). A análise do resíduo sólido da flor do cardo, por cromatografia gasosa, permitiu identificar a presença de açúcares constituintes de polissacarídeos pécticos. A análise por HPLC, dos extratos metanólicos e cetónicos, revelaram a presença de ácidos hidroxibenzóicos e hidroxicinâmicos na flor do cardo. A amostra mais rica nestes compostos foi a amostra secada a 50ºC. O aumento da temperatura de secagem originou uma diminuição de ácidos fenólicos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The processing of meats at the factory level can trigger the onset of lipid oxidation, which can lead to meat quality deterioration. Warmed over flavor is an off-flavor, which is associated with oxidative deterioration in meat. To avoid or delay the auto-oxidation process in meat products, synthetic and natural antioxidants have been successfully used. Grape (Vitis Vinifera) is of special interest due to its high content of phenolic compounds. Grape seed extract sold commercially as a dietary supplement, has the potential to reduce lipid oxidation and WOF in cooked ground beef when added at 1%. The objective of study 1 was to compare the antioxidant activity of natural antioxidants including grape seed extract and some herbs belonging to the Lamiaciae family: rosemary (Rosmarinus Officinalis), sage (Salvia Officinalis) and oregano (Origanum Vulgare) with commercial synthetic antioxidants like BHT, BHA, propyl gallate and ascorbic acid using the ORAC assay. All sample solutions were prepared to contain 1.8 gm sample/10 ml solvent. The highest antioxidant activity was observed for the grape seed extract sample (359.75 µM TE), while the lowest was observed for BHA, propyl gallate and rosemary also showed higher antioxidant potential with ORAC values above 300 μmol TE/g. ORAC values obtained for ascorbic acid and Sage were between 250-300μ mol TE/g while lowest values were obtained for Butylated Hydroxytoluene (28.50 µM TE). Based on the high ORAC values obtained for grape seed extract, we can conclude that byproducts of the wine/grape industry have antioxidant potential comparable to or better than those present in synthetic counterparts. The objective of study 2 was to compare three levels of grape seed extract (GSE) to commonly used antioxidants in a pre-cooked, frozen, stored beef and pork sausage model system. Antioxidants added for comparison with control included grape seed extract (100, 300, 500 ppm), ascorbic acid (AA, 100 ppm of fat) and propyl gallate (PG, 100 ppm of fat). Product was formed into rolls, frozen, sliced into patties, cooked on a flat griddle to 70C, overwrapped in PVC, and then frozen at –18C for 4 months. GSE- and PG-containing samples retained their fresh cooked beef odor and flavor longer (p<0.05) than controls during storage. Rancid odor and flavor scores of GSE-containing samples were lower (p<0.05) than those of controls after 4 months of storage. The L* value of all samples increased (p<0.05) during storage. Thiobarbituric acid reactive substances (TBARS) of the control and AA-containing samples increased (p<0.05); those of GSE-containing samples did not change significantly (p>0.05) over the storage period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Laccases (LCs) are multicopper oxidases that find application as versatile biocatalysts for the green bioremediation of environmental pollutants and xenobiotics. In this study we elucidate the degrading activity of Lac2 pure enzyme form Pleurotus pulmonarius towards aflatoxin B1 (AFB1) and M1 (AFM1). LC enzyme was purified using three chromatographic steps and identified as Lac2 through zymogram and LC-MS/MS. The degradation assays were performed in vitro at 25 °C for 72 h in buffer solution. AFB1 degradation by Lac2 direct oxidation was 23%. Toxin degradation was also investigated in the presence of three redox mediators, (2,2′-azino-bis-[3-ethylbenzothiazoline-6-sulfonic acid]) (ABTS) and two naturally-occurring phenols, acetosyringone (AS) and syringaldehyde (SA). The direct effect of the enzyme and the mediated action of Lac2 with redox mediators univocally proved the correlation between Lac2 activity and aflatoxins degradation. The degradation of AFB1 was enhanced by the addition of all mediators at 10 mM, with AS being the most effective (90% of degradation). AFM1 was completely degraded by Lac2 with all mediators at 10 mM. The novelty of this study relies on the identification of a pure enzyme as capable of degrading AFB1 and, for the first time, AFM1, and on the evidence that the mechanism of an effective degradation occurs via the mediation of natural phenolic compounds. These results opened new perspective for Lac2 application in the food and feed supply chains as a biotransforming agent of AFB1 and AFM1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The common Mediterranean ornamental strawberry-tree (Arbutus unedo L.) produces an edible reddish sweet berry that is found to be bland and tasteless unless it is consumed overripe, otherwise it is discarded or used as basic agricultural sub residue. The bioactive properties of this fruit have been reported and related with phenolic compounds, mainly flavan-3-ols, such as catechin and procyanidins, which has opened the opportunity to exploit their extraction from alternative sources.The common Mediterranean ornamental strawberry-tree (Arbutus unedo L.) produces an edible reddish sweet berry that is found to be bland and tasteless unless it is consumed overripe, otherwise it is discarded or used as basic agricultural sub residue. The bioactive properties of this fruit have been reported and related with phenolic compounds, mainly flavan-3-ols, such as catechin and procyanidins, which has opened the opportunity to exploit their extraction from alternative sources. This study compares and optimizes the maceration, microwave and ultrasound extraction techniques in the recovery of a catechin extract from Arbutus unedo L. fruits and evaluate the stability of flavan-3-ols during storage and application processes. To obtain conditions that maximize the catechin extraction yield, a response surface methodology was used. Maceration and microwave extractions were found to be the most effective methods, capable of yielding 1.38±0.1 and 1.70±0.3 mg of catechin/g dry weight (dw) in the corresponding optimal extraction conditions. The optimal conditions for maceration were 93.2±3.7 min, 79.6±5.2 ºC and 23.1±3.7 % of ethanol, while for the microwave extraction were 42.2±4.1 min, 137.1±8.1 ºC and 12.1±1.1 % of ethanol. The microwave system was a quicker solution, conducting to slightly higher yields of catechin than maceration, but this one needed lower temperatures to reach similar yields. The ultrasound method was the least effective solution in terms of catechin yield extraction (0.71±0.1 mg/g at 42.4±3.6 min, 314.9±21.2 W and 40.3±3.8 %. ethanol). The stability was tested with of the catechin-enriched extract (60% flavan-3-ols and 22% catechin), obtained under the best maceration conditions, was tested. Therefore, catechin-enriched extracts were submitted to physical and chemical stability studies, considering the main affecting variables (time, temperature and pH): i) a stability study of the extracts during storage as powder system; and ii) a stability study of the extracts in simulated food environment (aqueous solution system). The measured responses were the flavan-3-ols and catechin contents, determined by HPLC-DAD, and the antioxidant activity of the extracts evaluated by hydrophilic assays. Mechanistic and phenomenological equations were used to describe the responses, and the optimal conditions for flavan-3-ols (including catechin) stability as powder extract during a month were pH= 5.4 and T= -20ºC; while its stability in aqueous solution remained during the 24 h of application at pH<4 and T<30ºC. This study compares and optimizes the maceration, microwave and ultrasound extraction techniques in the recovery of a catechin extract from Arbutus unedo L. fruits and evaluate the stability of flavan-3-ols during storage and application processes. To obtain conditions that maximize the catechin extraction yield, a response surface methodology was used. Maceration and microwave extractions were found to be the most effective methods, capable of yielding 1.38±0.1 and 1.70±0.3 mg of catechin/g dry weight (dw) in the corresponding optimal extraction conditions. The optimal conditions for maceration were 93.2±3.7 min, 79.6±5.2 ºC and 23.1±3.7 % of ethanol, while for the microwave extraction were 42.2±4.1 min, 137.1±8.1 ºC and 12.1±1.1 % of ethanol. The microwave system was a quicker solution, conducting to slightly higher yields of catechin than maceration, but this one needed lower temperatures to reach similar yields. The ultrasound method was the least effective solution in terms of catechin yield extraction (0.71±0.1 mg/g at 42.4±3.6 min, 314.9±21.2 W and 40.3±3.8 %. ethanol). The stability was tested with of the catechin-enriched extract (60% flavan-3-ols and 22% catechin), obtained under the best maceration conditions, was tested. Therefore, catechin-enriched extracts were submitted to physical and chemical stability studies, considering the main affecting variables (time, temperature and pH): i) a stability study of the extracts during storage as powder system; and ii) a stability study of the extracts in simulated food environment (aqueous solution system). The measured responses were the flavan-3-ols and catechin contents, determined by HPLC-DAD, and the antioxidant activity of the extracts evaluated by hydrophilic assays. Mechanistic and phenomenological equations were used to describe the responses, and the optimal conditions for flavan-3-ols (including catechin) stability as powder extract during a month were pH= 5.4 and T= -20ºC; while its stability in aqueous solution remained during the 24 h of application at pH<4 and T<30ºC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Increased popularity of vegetarianism, lactose intolerance, and the high cholesterol content in dairy products, are all factors that have recently increased the demand for nondairy probiotic products. The objective of this study is to evaluate the effect of refrigeration on the viability of probiotics and asses someof the chemical and sensory characteristics in cornelian cherry juice. Results: The Iranian native probiotic strain (L. casei T4) showed greater viability compared to industrial types (viable count of 8.67 log cfu/mL versus <6.0 log cfu/mL at d 28). However, this most tolerant Iranian strain, could not withstand the conditions of ‘Natural juice’ at pH 2.6 for more than 7 d. Following a pH adjusted treatment (to pH ~3.5), the viability of the strain was improved to 28 d with some evidence of increased growth of the probiotic. However, the level of antioxidant activity, anthocyanin and phenolic compounds, revealed a slight decrease during cold storage. The changes in the chemical profile of the sample containing L. casei T4 indicated fermentation activity during cold storage. Sensory evaluation results showed significant differences between samples containing L. casei TD4 and other samples in taste, odor and overall acceptance in a complimentary way. Conclusions: The results showed that low pH and presence of inhibitor phenolic compounds of cornelian cherry juice have negative effect on viability of probiotics, especially industrial strains during refrigerated storage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Suomalaiset marjat sisältävät huomattavia määriä erilaisia fenoliyhdisteitä ja ne ovat siksi erinomaisia fenoliyhdisteiden lähteitä moniin muihin elintarvikkeisiin verrattuna. Fenoliyhdisteet ovat kasveissa syntyviä aineenvaihduntatuotteita, joilla on todettu olevan terveyden kannalta positiivia vaikutuksia. Ne antavat kasvikunnan tuotteille niiden tunnusomaisen värin sekä toimivat suoja-aineina taudinaiheuttajia vastaan. Erityisesti elintarvike-, lääke- ja kosmetiikkateollisuus jalostavat marjoja erilaisiksi lopputuotteiksi. Fenoliyhdisteet tuovat näihin tuotteisiin hyödyllisiä terveysvaikutuksia ja ne voivat toimia niissä myös väripigmentteinä. Fenoliyhdisteet ovat kuitenkin suhteellisen epästabiileja yhdisteitä. On havaittu, että prosessointi- ja säilytystavat vaikuttavat huomattavasti niiden stabiilisuuteen ja hajoamiseen. Tämän kandidaatintyön tavoitteena oli selvittää fenoliyhdisteiden stabiilisuuteen vaikuttavia tekijöitä prosessoinnin ja säilytyksen aikana kirjallisuuden pohjalta. Tämän työn tulosten perusteella marjojen prosessointi kannattaa suorittaa mahdollisimman lyhyessä ajassa matalissa lämpötiloissa, sillä monet fenoliyhdisteistä eivät ole pitkään lämpöstabiileja. Säilytys kannattaa tehdä myös matalissa lämpötiloissa; pitkänä säilytysaikana pakastettuna. Korkea pH vaikuttaa usean fenoliyhdisteen hajoamiseen ja se saattaa aiheuttaa tuotteissa värinmuutoksia. Valo, hapen läsnäolo sekä erilaiset muut yhdisteet voivat vaikuttaa heikentävästi fenoliyhdisteiden stabiilisuuteen sekä prosessoinnin että säilytyksen aikana. Fenoliyhdisteiden stabiilisuus on hyvin rakennekohtaista ja siksi prosessoinnin ja säilytyksen tarkkojen vaikutusten yleistäminen kaikkiin fenoliyhdisteisiin on vaikeaa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objectivo do presente ensaio é avaliar o efeito do teor proteico da dieta na digestibilidade da bolota em porcos Alentejanos. Para tal, nove animais foram seccionados e colocados em caixas metabólicas onde as dietas foram distribuídas aleatoriamente, segundo o Modelo de Quadrado Latino 3 x 3. O ensaio in vivo foi assim dividido em três períodos, durante os quais se recolheram amostras de alimento, refugos fezes e urina para posterior análise em laboratório. Foi determinada a composição química do alimento e calculada a digestibilidade e balanço de azoto dos três tratamentos. Também foi determinado o conteúdo em compostos fenólicos e taninos da bolota pelo método do Folin­ Ciocalteu, taninos condensados pelo método do Butanol-HCl e a capacidade complexante dos taninos pelo método da Difusão Radial. Devido à reduzida capacidade de os taninos complexarem as proteínas e à baixa ingestão da luzerna não foi possível verificar diferenças na proteína ingerida entre os tratamentos testados. ABSTRACT; The aim of present experiment is to evaluate the effect of protein content in diet digestibility of oak acorn in Alentejano pigs. For that, nine animals were selected and housed in metabolic cages where diets were given randomly, in a Latin Square model3 x 3. The in vivo experiment was divided in three periods, during which were collected feed, refusals, feces and urine samples for subsequent laboratory analyses. Chemical feed composition was determinate and calculated the digestibility and nitrogen balance in three treatments. It was also determinate the amount of phenolic compounds and tannins on oak acorn by Folin-Ciocalteu assay, condensed tannins by Butanol-HCl assay and the availability to form complex with protein by Radial Diffusion assay. It was observed a reduced availability of tannins to bind proteins and a low Lucerne intake, so it wasn't possible to verify differences on protein intake, between tested treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Compounds derived from fungi has been the subject of many studies in order to broaden the knowledge of their bioactive potential. Polysaccharides from Caripia montagnei have been described to possess anti-inflammatory and antioxidant properties. In this study, glucans extracted from Caripia montagnei mushroom were chemically characterized and their effects evaluated at different doses and intervals of treatment. It was also described their action on colonic injury in the model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and its action on cells of the human colon carcinoma (HT-29). Compounds extracted of C. montagnei contain high level of carbohydrates (96%), low content of phenolic compounds (1.5%) and low contamination with proteins (2.5%). The (FT-IR) and (NMR) analysis showed that polysaccharides from this species of mushroom are composed of α- and β-glucans. The colonic damage was evaluated by macroscopic, histological, biochemical and immunologic analyses. The results showed a reduction of colonic lesions in all groups treated with the glucans of Caripia montagnei (GCM). GCM significantly reduced the levels of IL-6 (50 and 75 mg/kg, p < 0.05), a major inflammatory cytokine. Biochemical analyses showed that such glucans acted on reducing levels of alkaline phosphatase (75 mg/kg, p < 0.01), nitric oxide (p < 0.001), and myeloperoxidase (p < 0.001). These results were confirmed microscopically by the reduction of cellular infiltration. The increase of catalase activity suggest a protective effect of GCM on colonic tissue, confirming their anti-inflammatory potential. GCM displayed cytostatic activity against HT-29 cells, causing accumulation of cells in G1 phase, blocking the cycle cell progression. Those glucans also showed ability to modulate the adhesion of HT-29 cells to Matrigel® and reduced the oxidative stress. The antiproliferative activity against HT-29 cells displayed by GCM (p <0.001) can be attributed to its cytostatic activity and induction of apoptosis by GCM

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Borututu ( Cochlospermum angolensis Welw.) is a widespread tree in Angola used since antiquity by traditional healers for the prevention and treatment of hepatic diseases and for the prophylaxis of malaria [1]. This plant is mostly consumed as infusions but is also available as dietary supplements, such as piiis, capsules, and syrups, among others. In the present study, the aim was to evaluate the proximate composition and energetic contribution of borututu as weii as its composition in hydrophilic (sugars and organic acids) and lipophilic (fatty acids and tocopherols) compounds, given the fact that this plant is directly introduced in some dietary supplements. Furthermore, the bioactivity (antioxidant, hepatoprotective and antimicrobial activities) of three different formulations of borututu (infusion, pills, and syrup) was assessed and compared, and since plant beneficial properties are often ascribed to phenolic compounds [2], the phenolic profile of the formulations was also analysed. Carbohydrates (88 g/100 g) and fat (2.5 g/100 g) were the major and tl1e minor components of the studied borututu dry barks, respectively, with an energetic contribution of 384 kcal/100 g. Fructose was the most abundant sugar (1.3 g/100 g), foilowed by sucrose, trehalose and glucose (1.1, 0.98 and 0.79 g/100 g, respectively). Oxalic (0.70 g/100 g), malic (0.63 g/100 g) and citric (0.57 g/100 g) acids were present in higher amounts but shikimic and fumaric acids were also detected. Among the fatty acids found in borututu, a prevalence of saturated fatty acids (SF A; 48.2%) was observed, whereas polyunsaturated (PUFA) and monounsaturated (MUFA) fatty acids were detected in relative percentages of 30.9% and 20.8%, respectively. P-tocopherol was the most abundant of the four isoforms found in the sample, foiiowed by o-, a- and y-tocopherol, present in concentrations of 597,43, 3.7 and 2.0 g/100 g, respectively. Borututu infusion revealed the highest antioxidant activity, with EC50 values ranging from 20 to 600 J.lg/mL and was the only formulation inhibiting the growth of an HepG2 ceii line, with a Gl5o value of 146 J.lg/mL. This formulation.also revealed the best antimicrobial capacity and proved to be able to inhibit the growth of Escherichia coli, E. coli ESBL, Staphylococcus aureus and Pseudomonas aeruginosa, with MIC values of 50, 6.2, 1.6 and 25 mg!mL, respectively. Pills revealed activity against some of the studied bacterial strains and the syrup did not reveal antimicrobial activity at the studied concentration. Eilagic acids, methyl ellagic acids, eucaglobulinlglobulusin B and (epi)gaiiocatechin-0-gallate were the compounds present in all the different formulations. The highest concentration of phenolic compounds was found in the infusion extract. Protocatechuic acid was the most abundant phenolic compound in the infusions, the only preparation where it was detected, whereas ( epi)gaiiocatechin- 0-gallate was the main phenolic in the pills and eucaglobulinlglobulusin in the syrup. In a general way, borututu proved to be a good source of phytochemicals such as phenolic compounds, with the infusions revealing the best bioactive properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum Mill.) is the second most important vegetable crop worldwide and a rich source of hydrophilic (H) and lipophilic (L) antioxidants. The H fraction is constituted mainly by ascorbic acid and soluble phenolic compounds, while the L fraction contains carotenoids (mostly lycopene), tocopherols, sterols and lipophilic phenolics [1,2]. To obtain these antioxidants it is necessary to follow appropriate extraction methods and processing conditions. In this regard, this study aimed at determining the optimal extraction conditions for H and L antioxidants from a tomato surplus. A 5-level full factorial design with 4 factors (extraction time (I, 0-20 min), temperature (T, 60-180 •c), ethanol percentage (Et, 0-100%) and solid/liquid ratio (S/L, 5-45 g!L)) was implemented and the response surface methodology used for analysis. Extractions were carried out in a Biotage Initiator Microwave apparatus. The concentration-time response methods of crocin and P-carotene bleaching were applied (using 96-well microplates), since they are suitable in vitro assays to evaluate the antioxidant activity of H and L matrices, respectively [3]. Measurements were carried out at intervals of 3, 5 and 10 min (initiation, propagation and asymptotic phases), during a time frame of 200 min. The parameters Pm (maximum protected substrate) and V m (amount of protected substrate per g of extract) and the so called IC50 were used to quantify the response. The optimum extraction conditions were as follows: r~2.25 min, 7'=149.2 •c, Et=99.1 %and SIL=l5.0 giL for H antioxidants; and t=l5.4 min, 7'=60.0 •c, Et=33.0% and S/L~l5.0 g/L for L antioxidants. The proposed model was validated based on the high values of the adjusted coefficient of determination (R2.wi>0.91) and on the non-siguificant differences between predicted and experimental values. It was also found that the antioxidant capacity of the H fraction was much higher than the L one.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, many consumers search for food with functional characteristics beyond their nutritional properties. Thus, the concept of functional food becomes a hot topic, allowing the obtaining of health benefits, including disease prevention. In this context, plants are recognized as sources of a wide range of bioactives, mainly phenolic compounds. In particular, the Rosmarinus officina/is L., commonly referred as rosemary, has several phenolic compounds with different bioactive properties such as antioxidant, antiinflammatory and antimicrobial activities, among others [!]. Hence, this plant has great potential for incorporation into foods in order to confer bioactivity to the final products. However, it should be highlighted that the bioactive compounds if exposed to adverse environments, for example: light, moisture, extreme pH, storage, food processing conditions, can be degraded leading to the consequent loss of bioactivity [2]. The microencapsulation is an alternative to overcome this problematic of bioactive compounds, as also to ensure controlled release, or target deliver to a specific site [3]. In this work, lyophilized rosemary aqueous extract prepared by in:'usion was used as a functional ingredient for cottage cheeses, after proving that it possesses, both higher content in phenolic compounds and higher antioxidant activity, comparatively with the corresponding hydroethanolic extract. The rosemary aqueous extract revealed, for example, a DPPH scavenging activity with an EC50 value of 73.44±0.54j!g/mL and presented as main phenolic compound the caffeic acid dimer, commonly named as rosmarinic acid. For the functionalized cottage cheeses, a decrease of bioactivity was observed after seven days under storage in fridge, when the extracts were incorporated in its free form. Therefore, to preserve the antioxidant activity, the rosemary aqueous extract was efficiently microencapsulated by using an atomization/coagulation technique and alginate as the matrix material and thereafter incorporated into the cottage cheeses. The final microspheres showed a size, estimated by OM using a magnification of I OOx, ranging between 51.1 and 122.6 J!m and an encapsulation efficiency, estimated through an indirect method, approaching 100%. Overall, the introduction of both free and microencapsulated extracts did not change the nutritional value of cottage cheeses, providing bioactivity that was more preserved with microencapsulated extracts putting in evidence the importance of using microencapsulation to develop effective functional foods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Angiogenesis is a biological process through which there is the formation of new blood vessels from preexisting ones [I]. However, in pathological cases, the abnormal growth of new blood vessels promotes the development of various diseases including cancer [2) through the production of atypically large amounts of angiogenesis factors, e.g. the vascular endothelial growth factor (VEGF) [3]. The plant secondary metabolites have been the subject of several studies to evaluate their benefits to human health. In particular, the phenolic compounds have high potential for use in the food industry, including the development of functional foods. Among these, apigenin has been associated with chemopreventive effects related to cancer [4]. In fact, chemoprevention is a present-day concept and contemplates the use of medicines, biological compounds or nutrients as an intervention strategy of cancer prevention. In this work, an Arenaria montana L hydroethanolic extract was prepared and after characterization by HPLC-DAD-ESI/MS showed to be rich in apigenin derivatives. Furthermore, it exhibited ability to inhibit the phosphorylation of VEGFR-2 (vascular endothelium growth factor receptor) through an enzymatic assay. However, for the major protection of bioactive compounds, the extract was microencapsulated by an atomization/coagulation technique with alginate as the matrix material. Posteriorly, the hydroethanolic extract, in free and microencapsulated forms, was incorporated in yogurts in order to develop a novel chemopreventer food in relation to the angiogenesis process. The functionalized yogurts with A. montana extracts (free and microencapsulated) showed a nutritional value similar to the used control (yogurt without extract); however, the samples enriched with extracts revealed added-value regarding the VEGFR-2 phosphorylation inhibition ability. This effect was more effectively preserved over time in the samples functionalized with the protected extract. Overall, this work contributes to the valorization of plants rich in flavonoids, exploring its antiangiogenic potential with VEGFR-2 as target. Moreover, the atomization/coagulation technique allowed the production of viable microspheres enriched with the plant extract. The microspheres were effectively incorporated into yogurts, protecting the extract thus envisaging the development of novel functional foods with chemopreventive effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foeniculum vulgare Mill. (fennel) and Matricaria recutita L. (chamomile) are two examples of plants with reported antioxidant and antimicrobial properties, which can be related with their composition in phenolic compounds [1,2]. Furthermore, according to previous results of our research group, the direct incorporation of the aqueous extracts showed capacity to maintain the nutritional properties of the cottage cheeses, up to 7 days of storage, while improving the antioxidant potential. However, after 14 days, a decrease in the antioxidant properties was observed [1,2], which can be related with factors such as light, moisture, temperature and pH, that can cause bioactive compounds degradation. Therefore, the aim of the present study was to prepare microcapsules with the aqueous extracts of fennel and chamomile for incorporation in cottage cheese samples, in order to protect the bioactive molecules present in the extracts, such as phenolic compounds, and prevent the decrease of the antioxidant activity observed after the 14 days period. The microspheres were prepared using an atomization/coagulation technique. Sodium alginate was used as the matrix material to produce the microspheres that were characterized through optical microscopy (OM), during and after atomization, for inspecting morphology. The encapsulation efficiency (EE) was determined by HPLC-DAD by an indirect method by analysing the coagulation solution. FTIR was also used to attest the presence of the extract inside of the alginate matrix. These microencapsulated extracts were incorporated in cottage cheese samples that were further characterized in terms of nutritional properties and antioxidant potential right after incorporation, and after 7 and 14 days of storage at 4•c. The EE was estimated as -100% and the FTIR analysis confirmed the presence of the extracts inside the microspheres. The results showed that the incorporation of the microencapsulated extracts did not cause changes in the nutritional value of cottage cheeses (through a comparison with control samples without extracts). The predominant fatty acids were palmitic (C16:0) and oleic (CI8:0) acids. The order of abundance of fatty acids was as follows: saturated fatty acids (SF A)> monounsaturatcd fatty acids (MUF A)> polyunsaturated fatty acids (PUF A). Regarding free sugars, lactose was the only sugar identified and quantified in all samples. Regarding the antioxidant activity, the samples functionalized with the microencapsulated extracts showed a higher preservation of this property even after the 7th day of storage. Overall, the incorporation of the protected plant extracts in dairy foods can be a strategy to provide health benefits to consumers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Marine algae are one of the major sources of biologic compounds. In extracellular matrix of these organisms there are sulfated polysaccharides that functions as structural components and provides protection against dehydration. The fraction 1.0 (F1.0) rich in sulfated galactans obtained from red seaweed Hypnea musciformis was physicochemical characterized and evaluated for pharmacologic activity through antioxidant activity, cytotoxic action on erythrocytes, anticoagulant, stimulatory action under antithrombotic heparan sulfate synthesis and their effects on cell proliferation and cycle cell progression. The main components of F1.0 were carbohydrates (49.70 ± 0.10%) and sulfate (44.59 ± 0.015%), presenting phenolic compounds (4.79 ± 0.016%) and low protein contamination (0.92 ± 0.001%). Fraction 1.0 showed polidisperse profile and signs in infrared analysis in 1262, 1074 and 930, 900 and 850 attributed to sulfate esters S=O bond, presence of a 3,6- anidrogalactose C-O bond, non-sulfated β-D-galactose and a C-O-SO4 bond in galactose C4, respectively. The fraction rich in sulfated galactans exhibited strong antioxidant action under lipid peroxidation assay with IC50 of 0.003 mg/mL. Besides the inhibition of hemolysis induced by H2O2 in erythrocytes treated with F1.0, this fraction did not promote significant cytotoxity under erythrocytes membranes. F1.0 exhibited low anticoagulant activity causing moderate direct inhibition of enzimatic activity of thrombin. This fraction promoted stimulation around of 4.6 times on this synthesis of heparan sulfate (HS) by rabbit aortic endothelial cells (RAEC) in culture when was compared with non treated cells. The fraction of this algae displayed antiproliferative action under RAEC cells causing incresing on cell number on S fase, blocking the cycle cell progression. Thus F1.0 presented cytostatic and no cytotoxic action under this cell lineage. These results suggest that F1.0 from H. musciformis have antioxidant potential which is a great effect for a compound used as food and in food industry which could be an alternative to food industry to prevent quality decay of lipid containing food due to lipid peroxidation. These polysaccharides prevent the lipid peroxidation once the fraction in study exhibited strong inhibitory action of this process. Furthermore that F1.0 present strong antithrombotic action promoting the stimulation of antithrombotic HS synthesis by endothelial cells, being important for thrombosis preventing, by its inhibitory action under reactive oxygen species (ROS) in some in vitro methods, being involved in promotion of hypercoagulability state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aging process is conceived as a normal stage during human life cycle, but it is also considered a hot topic among scientists and medical community. Alarming rates of premature aging and oxidative stress-related diseases have increasingly affect human individuals. Stress, pollution and exposition to chemical substances are considered the main triggering factors for those conditions; in addition, they also suppress the immune system and, therefore, improve organic vulnerability and occurrence of opportunistic infections [I]. Apart from the associated morbidity and mortality, the increasing rates of antimicrobial resistance improve the severity of the clinical conditions [2]. Botanical preparations possess a multitude of bioactive properties, namely acting as antimicrobials, antioxidants, and homeostasis modulators. Thus, upcoming alternatives, mainly based in plant phytochemicals, are necessary to improve the wellbeing as also life expectancy of individuals. The present study aims to evaluate and to compare both antioxidant and antimicrobial properties of plant extracts rich in phenolic compounds. Among the tested plants, Glycyrrhiza glabra L. (licorice) evidenced the most pronounced free radicals scavenging and antimicrobial effects, followed by Salvia officina/is L. (sage), Thymus vulgaris L. (thyme) and Origanum vulgare L. (oregano). Eucalyptus globulus Labill. (blue gum) and Juglans regia L. (walnut) also showed a high effect, while Pterospartum tridentatum (L.) Willk. (carqueja) and Rubus ulmifolius Schott (elm leaf blackberry) displayed moderate effects, and lastly, Tabebuia impetigirwsa (Mart. ex DC) Standley (pau d'arco), Foeniculum vulgare Miller (fennel), Rosa canina L. (rose hips) and Matricaria recutita L. (chamomile) gave only slight effects. In general, the most pronounced bioactivities were observed in the plant preparations (infusion>decoction>hydromethanolic extract) with higher levels of phenolic compounds (both flavonoids and phenolic acids). The observed synergisms between the phenolic compounds present in the extracts highlight the use of phytochemicals as future health promoters. However, further studies are necessary to understand the effective mode of action of individual phenolic constituents as also the existence of polyvalence relationships between them.