982 resultados para T174M POLYMORPHISMS
Resumo:
Approximately 50% of all melanoma families worldwide show linkage to 9p21-22, but only about half of these have been shown to contain germ line CDKN2A mutations. It has been hypothesized that a proportion of these families carry mutations in the noncoding regions of CDKN2A. Several Canadian families have been reported to carry a mutation in the 5' UTR, at position -34 relative to the start site, which gives rise to a novel AUG translation initiation codon that markedly decreases translation from the wild-type AUG (Liu et al., 1999). Haplotype sharing in these Canadian families suggested that this mutation is of British origin. We sequenced 1,327 base pairs (bp) of CDKN2A, making up 1,116 bp of the 5' UTR and promoter, all of exon 1, and 61 bp of intron 1, in at least one melanoma case from 110 Australian families with three or more affected members known not to carry mutations within the p16 coding region. In addition, 431 bp upstream of the start codon was sequenced in an additional 253 affected probands from two-case melanoma families for which the CDKN2A mutation status was unknown. Several known polymorphisms at positions -33, -191, -493, and -735 were detected, in addition to four novel variants at positions 120, -252, -347, and -981 relative to the start codon. One of the probands from a two-case family was found to have the previously reported Q50R mutation. No family member was found to carry the mutation at position -34 or any other disease-associated mutation. For further investigation of noncoding CDKN2A mutations that may affect transcription, allele-specific expression analysis was carried out in 31 of the families with at least three affected members who showed either complete or indeterminate 9p haplotype sharing without CDKN2A exonic mutations. Reverse transcription polymerase chain reaction and automated sequencing showed expression of both CDKN2A alleles in all family members tested. The lack of CDKN2A promoter mutations and the absence of transcriptional silencing in the germ line of this cohort of families suggest that mutations in the promoter and 5' UTR play a very limited role in melanoma predisposition. (C) 2001 Wiley-Liss, Inc.
Resumo:
Background: The significant association between alcohol dehydrogenase (ADH)-2 genotype and alcohol-dependence risk, demonstrated in both Asian and non-Asian populations, suggests a link between the metabolism of alcohol (ethanol) and individual differences in susceptibility to dependence. Methods: We tested this hypothesis by following up on subjects who took part in the Alcohol Challenge Twin Study conducted in 1979-1981 and comparing the blood and breath alcohol results in that study between subjects who subsequently did or did not meet diagnostic criteria for lifetime alcohol dependence in 1992-1993. Results: Subjects who met DSM-III-R criteria for lifetime alcohol dependence at follow-up had higher blood and breath alcohol values after alcohol challenge than never-dependent subjects. Multivariate analysis showed independent effects of susceptibility to alcohol dependence and smoking status on blood alcohol concentrations, whereas habitual alcohol intake at the time of the initial study had marginally significant effects. The risk of alcohol dependence was 2-fold higher in men and 3-fold higher in women with blood or breath alcohol concentrations in the highest quartile than in the lowest quartile. Conclusions: In view of this association and the known genetic influences on both alcohol pharmacokinetics and alcohol dependence, it is probable that part of the heritability of dependence is mediated by genes (other than the known ADH2 and ADH3 polymorphisms) affecting alcohol metabolism.
Resumo:
Much of the individual variation in drug response is due to genetic drug metabolic polymorphisms. Clinically relevant examples include acetylator status; cytochrome P450 2D6, 2C9 and 2C19 polymorphisms; and thiopurine methyltransferase deficiency. It is important to be aware of which drugs are subject to pharmacogenetic variability. In the future, population-based pharmacogenetic testing will allow more individualized drug treatment and will avoid the current empiricism.
Resumo:
Conventional methods for detecting differences in microsatellite repeat lengths rely on electrophoretic fractionation on long denaturing polyacrylamide gels, a time-consuming and labor-intensive method. Therefore, there is a need for the development of new and rapid approaches to routinely detect such length polymorphisms. The advent of techniques allowing the coupling of DNA molecules to solid surfaces has provided new prospects in the area of mutation. We describe here the development and optimization of the ligase-assisted spacer addition (LASA) method, a novel and rapid procedure based on an ELISA format to measure microsatellite repeat lengths. The LASA assay was successfully applied to a set of 11 bird samples to assess its capability as a genotyping method.
Resumo:
RAD51 colocalizes with both BRCA1 and BRCA2, and genetic variants in RAD51 would be candidate BRCA1/2 modifiers. We searched for RAD51 polymorphisms by sequencing 20 individuals. We compared the polymorphism allele frequencies between female BRCA1/2 mutation carriers with and without breast or ovarian cancer and between population-based ovarian cancer cases with BRCA1/2 mutations to cases and controls without mutations. We discovered two single nucleotide polymorphisms (SNPs) at positions 135 g-->c and 172 g-->t of the 5' untranslated region. In an initial group of BRCA1/2 mutation carriers, 14 (21%) of 67 breast cancer cases carried a c allele at RAD51:135 g-->c, whereas 8 (7%) of 119 women without breast cancer carried this allele. In a second set of 466 mutation carriers from three centers, the association of RAD51:135 g-->c with breast cancer risk was not confirmed. Analyses restricted to the 216 BRCA2 mutation carriers, however, showed a statistically significant association of the 135 c allele with the risk of breast cancer (adjusted odds ratio, 3.2; 95% confidence limit, 1.4-40). BRCA1/2 mutation carriers with ovarian cancer were only about one half as likely to carry the RAD51:135 g-->c SNP. Analysis of the RAD51:135 g-->c SNP in 738 subjects from an Israeli ovarian cancer case-control study was consistent with a lower risk of ovarian cancer among BRCA1/2 mutation carriers with the c allele. We have identified a RAD51 5' untranslated region SNP that may be associated with an increased risk of breast cancer and a lower risk of ovarian cancer among BRCA2 mutation carriers. The biochemical basis of this risk modifier is currently unknown.
Resumo:
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Izuru Matusmoto and Peter A. Wilce. The presentations were (1) GABA receptor subunit expression in the human alcoholic brain, by Tracey Buckley and Peter Dodd; (2) NMDAR gene expression during ethanol addiction, by Jorg Puzke, Rainer Spanagel, Walther Zieglgansberger, and Gerald Wolf; (3) Differentially expressed gene in the nucleus accumbens from ethanol-administered rat, by Shuangying Leng; (4) Expression of a novel gene in the alcoholic brain, by Peter A. Wilce; and (5) Investigations of haplotypes of the dopamine Da-receptor gene in alcoholics, by Hans Rommelspacher, Ulrich Finckh, and Lutz G. Schmidt.
Resumo:
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular Information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability In three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced similar to 50 scoreable polymorphic DNA markers, between individuals of three Independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from Individual DNA samples that had been combined to create the bulked samples.
Resumo:
The virulence spectrum of 112 isolates of Phytophthora clandestina collected from 56 sites in four subterranean clover-growing states in southern Australia was determined using differential cultivars of subterranean clover. Five races were detected, with race 0 in all states except New South Wales, race 1 in all states, race 2 only in Victoria, race 3 only in New South Wales, and race 4 in Victoria and Western Australia. The level of genotypic diversity among the different P. clandestina populations was investigated using five RAPD primers. Among 30 bands amplified, only two were polymorphic. This enabled identification of four multilocus RAPD genotypes. Three of the four genotypes occurred in all four states. Races 2 and 3 occurred with RAPD genotypes 1 and 2 only whereas races 0 and 1 occurred in all four multilocus RAPD genotypes. These results indicate that the pathogenicity spectrum of P. clandestina can change rapidly.
Resumo:
We examined the genetic diversity of symbiotic dinoflagellates (Symbiodinium sp.) in the widespread hermatypic coral Plesiastrea versipora from tropical/subtropical (north-eastern Australia) and temperate waters (south-eastern Australia) using restriction fragment length polymorphisms of partial 18S ribosomal DNA (rDNA), together with sequence analysis of partial 28S rDNA. This study revealed that P. versipora associates with at least two distinct genotypes of symbiotic dinoflagellates and that the presence of these genotypes varies with latitude. P. versipora colonies from subtropical and tropical waters contained symbionts belonging to Symbiodinium clade C, while P. versipora colonies at high-latitude sites contained clade B. Variability within the two groups of symbionts (clades H and C) was minimal, suggesting possible host fidelity. The geographically distinct varieties of symbionts within the tissue of this hermatypic coral are likely to be associated with algal physiological differences, which in turn may relate to changing selective pressures as a function of latitude along the eastern Australian seaboard.
Resumo:
Previous studies have shown that a negative relationship exists between transpiration efficiency (TE) and carbon isotope discrimination (Delta) and between TE and specific leaf area (SLA) in Stylosanthes scabra, A glasshouse experiment was conducted to confirm these relationships in an F-2 population and to study the causal nature of these relationships through quantitative trait loci (QTL) analysis, One hundred and twenty F-2 genotypes from a cross between two genotypes within S. scabra were used. Three replications for each genotype were maintained through vegetative propagation, Water stress was imposed by maintaining plants at 40% of field capacity for about 45 d. To facilitate QTL analysis, a genetic linkage map consisting of 151 RAPD markers was developed, Results from this study show that Delta was significantly and negatively correlated with TE and biomass production. Similarly, SLA showed significant negative correlation with TE and biomass production, Most of the QTL for TE and Delta were present on linkage groups 5 and 11. Similarly, QTL for SLA, transpiration and biomass productivity traits were clustered on linkage groups 13 and 24, One unlinked marker was also associated with these traits, There were several markers coincident between different traits, At all the coincident QTL, the direction of QTL effects was consistent with phenotypic data, At the coincident markers between TE and Delta, high alleles of TE were associated with low alleles of Delta. Similarly, low alleles of SLA were associated with high alleles of biomass productivity traits and transpiration. At the coincident markers between trans-4-hydroxy-N-methyl proline (MHP) and relative water content (RWC), low alleles of MHP were associated with high alleles of RWC, This study suggests the causal nature of the relationship between TE and Delta. Phenotypic data and QTL, data show that SLA was more closely associated with biomass production than with TE, This study also shows that a cause-effect relationship may exist between SLA and biomass production.
Resumo:
We report a further characterization of the genomic region containing the soybean supernodulation gene NTS-1. We performed a search for new markers linked to NTS-1 by combining DNA amplification fingerprinting (DAF) and bulked segregant analysis (BSA). The search resulted in one cloned polymorphism (B44-456) linked in trans, 8.5cM from the locus. Southern hybridization showed duplication of the B44-456 sequence in the soybean genome. Additionally, a DNA database search revealed one Arabidopsis thaliana genomic clone from chromosome I possessing 62% homology to the B44-456 marker. A relatively low number of polymorphisms were identified by several PCR marker technologies for this soybean genomic region, providing an additional support for its highly conserved and/or duplicated organization.
Resumo:
1. Schizophrenia is a chronic, disabling brain disease that affects approxmately 1% of the world's population. It is characterized by delusions, hallucinations and formal thought disorder, together with a decline in socio-occupational functioning. While the causes for schizophrenia remain unknown, evidence from family, twin and adoption studies clearly demonstrates that it aggregates in families, with this clustering largely attributable to genetic rather than cultural or environmental factors. Identifying the genes involved, however, has proven to be a difficult task because schizophrenia is a complex trait characterized by an imprecise phenotype, the existence of phenocopies and the presence of low disease penetrance, 2. The current working hypothesis for schizophrenia causation is that multiple genes of small to moderate effect confer compounding risk through interactions with each other and with non-genetic risk factors, The same genes may be commonly involved in conferring risk across populations or they may vary in number and strength between different populations. To search for evidence of such genetic loci, both candidate gene and genome-wide linkage studies have been used in clinical cohorts collected from a variety of populations. Collectively, these works provide some evidence for the involvement of a number of specific genes (e.g. the 5-hydroxytryptamine (5-HT) type 2a receptor (5-HT2a) gene and the dopamine D-3 receptor gene) and as yet unidentified factors localized to specific chromosomal regions, including 6p, 6q, 8p, 13q and 22q, These data provide suggestive, but no conclusive, evidence for causative genes. 3. To enable further progress there is a need to: (i) collect fine-grained clinical datasets while searching the schizophrenia phenotype for subgroups or dimensions that may provide a more direct route to causative genes; and (ii) integrate recent refinements in molecular genetic technology, including modern composite marker maps, DNA expression assays and relevant animal models, while using the latest analytical techniques to extract maximum information in order to help distinguish a true result from a false-positive finding.
Resumo:
GABAergic systems have been implicated in the pathogenesis of anxiety, depression and insomnia. These symptoms are part of the core and comorbid psychiatric disturbances in post-traumatic stress disorder (PTSD) In a sample of Caucasian male PTSD patients, dinucleotide repeat polymorphisms of the GABAA receptor beta3 subunit gene were compared to scores on the General Health Questionnaire-28 (GHQ). As the major allele at this gene locus (GABRB3) was GI, the alleles were divided into GI and non-GI groups. On the total score of the GHQ, which comprises the somatic symptoms, anxiety/insomnia, social dysfunction and depression subscales, patients with the GI non-GI genotype had a significantly higher score when compared to either the G1G1 genotype (alpha = 0.01) or the non-GI non-GI genotype (alpha = 0.05). No significant difference was found between the G1G1 and non-Gl non-G1 genotypes. When the GI non-G1 heterozygotes were compared to the combined G1G1 and non-GI non-GI homozygotes, a significantly higher total GHQ score was found in the heterozygotes (P = 0.002). These observations suggest a heterosis effect. Further analysis of GHQ subscale scores showed that heterozygotes compared to the combined homozygotes had higher scores on the somatic symptoms (P = 0.006), anxiety/insomnia (P = 0.003), social dysfunction (P = 0.054) and depression (P = 0.004) subscales. In conclusion, the present study indicates that in a population of PTSD patients, heterozygosity of the GABRB3 major (GI) allele confers higher levels of somatic symptoms, anxiety/insomnia, social dysfunction and depression than found in homozygosity. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The contribution of the UV component of sunlight to the development of skin cancer is widely acknowledged, although the molecular mechanisms that are disrupted by UV radiation (UVR) resulting in the loss of normal growth controls of the epidermal stem cell keratinocytes and melanocytes is still poorly understood. alpha-Melanocyte stimulating hormone (alpha-MSH), acting via its receptor MC1, has a key role in skin pigmentation and the melanizing response after exposure to UVR. The cell cycle inhibitor p16/CDKN2A also appears to have an important function in a cell cycle checkpoint response in skin after exposure to UVR. Both of these genes have been identified as risk factors in skin cancer, MC1R variants are associated with increased risk to both melanoma and nonmelanoma skin cancers, and p16/CDKN2A with increased risk of melanoma. Here we demonstrate that the increased expression of p16 after exposure to sub-erythemal doses of UVR is potentiated by alpha-MSH, a ligand for MC1R, and this effect is mimicked by cAMP, the intracellular mediator of alpha-MSH signaling via the MC1 receptor. This link between p16 and MC1R may provide a molecular basis for the increased skin cancer risk associated with MC1R polymorphisms.
Shoot control of hypernodulation and aberrant root formation in the har1-1 mutant of Lotus japonicus
Resumo:
The har1-1 mutant of Lotus japonicus B-129-S9 Gifu is characterized by two phenotypes: greater than normal nodulation (hypernodulation) and significantly inhibited root growth in the presence of its microsymbiont Mesorhizobium loti strain NZP2235. We demonstrate that the two traits co-segregate, suggesting a single genetic alteration involving developmental pleiotropy. A cross between the mutant and genotype Funakura (with wild-type root and nodule morphology) demonstrated Mendelian recessive segregation of both phenotypes (root and nodule) in 216 F2 individuals. Using DNA-amplification fingerprinting polymorphisms in Gifu har1-1 and Funakura, the mutant locus was positioned between two markers at about 7 and 13 cM distance. Reciprocal hypocotyl grafting of shoots and roots showed that the hypernodulation and reduced root phenotypes are both predominantly controlled by the shoot.