976 resultados para Swift, Jonathan, 1667-1745
Resumo:
As the international community struggles to find a cost-effective solution to mitigate climate change and reduce greenhouse gas emissions, carbon capture and storage (CCS) has emerged as a project mechanism with the potential to assist in transitioning society towards its low carbon future. Being a politically attractive option, legal regimes to promote and approve CCS have proceeded at an accelerated pace in multiple jurisdictions including the European Union and Australia. This acceleration and emphasis on the swift commercial deployment of CCS projects has left the legal community in the undesirable position of having to advise on the strengths and weaknesses of the key features of these regimes once they have been passed and become operational. This is an area where environmental law principles are tested to their very limit. On the one hand, implementation of this new technology should proceed in a precautionary manner to avoid adverse impacts on the atmosphere, local community and broader environment. On the other hand, excessive regulatory restrictions will stifle innovation and act as a barrier to the swift deployment of CCS projects around the world. Finding the balance between precaution and innovation is no easy feat. This is an area where lawyers, academics, regulators and industry representatives can benefit from the sharing of collective experiences, both positive and negative, across the jurisdictions. This exemplary book appears to have been collated with this philosophy in mind and provides an insightful addition to the global dialogue on establishing effective national and international regimes for the implementation of CCS projects...
Resumo:
Transit Capacity Analysis critical to urban system Planning Design, Operation Productive Performance Analysis not so well detailed This study extends TRB’s & Vuchic’s work in this area
Resumo:
In this paper, a hardware-based path planning architecture for unmanned aerial vehicle (UAV) adaptation is proposed. The architecture aims to provide UAVs with higher autonomy using an application specific evolutionary algorithm (EA) implemented entirely on a field programmable gate array (FPGA) chip. The physical attributes of an FPGA chip, being compact in size and low in power consumption, compliments it to be an ideal platform for UAV applications. The design, which is implemented entirely in hardware, consists of EA modules, population storage resources, and three-dimensional terrain information necessary to the path planning process, subject to constraints accounted for separately via UAV, environment and mission profiles. The architecture has been successfully synthesised for a target Xilinx Virtex-4 FPGA platform with 32% logic slices utilisation. Results obtained from case studies for a small UAV helicopter with environment derived from LIDAR (Light Detection and Ranging) data verify the effectiveness of the proposed FPGA-based path planner, and demonstrate convergence at rates above the typical 10 Hz update frequency of an autopilot system.
Resumo:
Effective digital human model (DHM) simulation of automotive driver packaging ergonomics, safety and comfort depends on accurate modelling of occupant posture, which is strongly related to the mechanical interaction between human body soft tissue and flexible seat components. This paper comprises: a study investigating the component mechanical behaviour of a spring-suspended, production level seat when indented by SAE J826 type, human thigh-buttock representing hard shell; a model of seated human buttock shape for improved indenter design using a multivariate representation of Australian population thigh-buttock anthropometry; and a finite-element study simulating the deflection of human buttock and thigh soft tissue when seated, based on seated MRI. The results of the three studies provide a description of the mechanical properties of the driver-seat interface, and allow validation of future dynamic simulations, involving multi-body and finite-element (FE) DHM in virtual ergonomic studies.
Resumo:
Disasters, particularly those triggered by nature are often followed by a swift humanitarian relief response to address the resultant emergencies. These efforts are then transitioned through the medium recovery stage, eventually aimed at providing a long term post-disaster reconstruction solution. Emergency humanitarian relief focuses on responding to the immediate need for restoration of basic services, medical treatment and medical supplies, food and temporary shelter, and is a short term strenuous effort. Reconstruction of permanent houses, on the other hand, is a continuous process that often requires decades of effort to return a community to normality. Whilst emergency relief is generally perceived to be very effective, post-disaster housing reconstruction projects often fail to meet their set objectives. This paper outlines and discusses factors that contribute to the failure of post-disaster housing reconstruction projects and the subsequent immediate and long term negative impacts of failure on project outcomes.
Resumo:
This article sets the context for this special themed issue on the 'Korean digital wave' by considering the symbiotic relationship between digital technologies, their techniques and practices, their uses and the affordances they provide, and Korea's 'compressed modernity' and swift industrialisation. It underscores the importance of interrogating a range of groundbreaking developments and innovations within Korea's digital mediascapes, and its creative and cultural industries, in order to gain a complex understanding of one of Australia's most significant export markets and trading partners. Given the financial and political commitment in Australia to a high-speed broadband network that aims to stimulate economic and cultural activity, recent technological developments in Korea, and the double-edged role played by government policy in shaping the 'Korean digital wave', merit close attention from media and communications scholars.
Resumo:
Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves.
Resumo:
Cyclic nitroxide radicals represent promising alternatives to the iodine-based redox mediator commonly used in dye-sensitized solar cells (DSSCs). To date DSSCs with nitroxide-based redox mediators have achieved energy conversion efficiencies of just over 5 % but efficiencies of over 15 % might be achievable, given an appropriate mediator. The efficacy of the mediator depends upon two main factors: it must reversibly undergo one-electron oxidation and it must possess an oxidation potential in a range of 0.600-0.850 V (vs. a standard hydrogen electrode (SHE) in acetonitrile at 25 °C). Herein, we have examined the effect that structural modifications have on the value of the oxidation potential of cyclic nitroxides as well as the reversibility of the oxidation process. These included alterations to the N-containing skeleton (pyrrolidine, piperidine, isoindoline, azaphenalene, etc.), as well as the introduction of different substituents (alkyl-, methoxy-, amino-, carboxy-, etc.) to the ring. Standard oxidation potentials were calculated using high-level ab initio methodology that was demonstrated to be very accurate (with a mean absolute deviation from experimental values of only 16 mV). An optimal value of 1.45 for the electrostatic scaling factor for UAKS radii in acetonitrile solution was obtained. Established trends in the values of oxidation potentials were used to guide molecular design of stable nitroxides with desired E° ox and a number of compounds were suggested for potential use as enhanced redox mediators in DSSCs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.
Resumo:
Abstract Genome-wide association studies (GWAS) have identified more than 30 prostate cancer (PrCa) susceptibility loci. One of these (rs2735839) is located close to a plausible candidate susceptibility gene, KLK3, which encodes prostate-specific antigen (PSA). PSA is widely used as a biomarker for PrCa detection and disease monitoring. To refine the association between PrCa and variants in this region, we used genotyping data from a two-stage GWAS using samples from the UK and Australia, and the Cancer Genetic Markers of Susceptibility (CGEMS) study. Genotypes were imputed for 197 and 312 single nucleotide polymorphisms (SNPs) from HapMap2 and the 1000 Genome Project, respectively. The most significant association with PrCa was with a previously unidentified SNP, rs17632542 (combined P = 3.9 × 10−22). This association was confirmed by direct genotyping in three stages of the UK/Australian GWAS, involving 10,405 cases and 10,681 controls (combined P = 1.9 × 10−34). rs17632542 is also shown to be associated with PSA levels and it is a non-synonymous coding SNP (Ile179Thr) in KLK3. Using molecular dynamic simulation, we showed evidence that this variant has the potential to introduce alterations in the protein or affect RNA splicing. We propose that rs17632542 may directly influence PrCa risk.