997 resultados para Spin-polarized charge distribution
Resumo:
Published mobility measurements obtained by capillary zone electrophoresis of human growth hormone peptides are described reasonably well by the classical theoretical relationships for electrophoretic migration. This conformity between theory and experiment has rendered possible a more critical assessment of a commonly employed empirical relationship between mobility (u), net charge (z) and molecular mass (M) of peptides in capillary electrophoresis. The assumed linear dependence between u and z/M-2/3 is shown to be an approximate description of a shallow curvilinear dependence convex to the abscissa. An improved procedure for the calculation of peptide charge (valence) is also described. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Trichostome ciliates are associated with many different lineages of herbivorous mammals but there are few comparative studies of these associations in each lineage of herbivores. Here the occurrence of the ciliate fauna in a range of herbivorous marsupials (diprotodonts) is investigated and compared with that of ruminants. A total of 371 potential host animals, representing 33 species and 7 families, were examined for the presence of ciliates. The prevalence of endocommensal ciliates within individual host species varied between 0 and 100%. Of the different dietary groups of marsupials examined, only foregut (macropodids) and hindgut (vombatids) fermentative herbivores were found to harbour ciliates; carnivorous (dasyurids), omnivorous (peramelids) and midgut fermenting herbivores (phalangeroids) all lacked ciliates. The majority of ciliate species were oioxenic, several occurred in closely related hosts and some were able to colonise unnatural hosts in captive populations. Ciliate prevalences were found to vary at all levels: between hosts of different species, between conspecific hosts collected at different localities or seasons and between conspecific hosts at one collecting locality. The faunal composition of the 2 marsupial families which harboured ciliates differed greatly: the vombatid fauna was composed exclusively of amylovoracids whereas the macropodids harboured amylovoracids, polycostids and macropodiniids. In comparison to the ciliate fauna of ruminants, the fauna of macropodids is both depauperate and much more host specific. Low species richness in each host may be due to the large numbers of stomach nematodes in macropodids which compete with and may prey upon the ciliates within the stomach. The high levels of host specificity are probably due to different patterns of ciliate transmission in macropodids as they do not ruminate, eructate or feed indiscriminantly on pasture contaminated with saliva containing ciliates.
Resumo:
Certain glycosidase inhibitors possess potent antiviral, antitumour and antidiabetic properties. Glyconic acid lactones, the earliest glycosidase inhibitors identified, have planar anomeric carbons that mimic the transition state of glycoside hydrolysis. Other classes include lactams, glycals, epoxides, halides and sulfonium ions, the latter based on the natural product salacinol from an antidiabetic herb.
Resumo:
Two different types of integrable impurities in a spin ladder system are proposed. The impurities are introduced in such a way that the integrability of the models is not violated. The models are solved exactly with the Bethe ansatz equations as well as the energy eigenvalues obtained. We show for both models that a phase transition between gapped and gapless spin excitations occurs at a critical value of the rung coupling J. In addition, the dependence of the impurities on this phase transition is determined explicitly. In one of the models the spin gap decreases by increasing the impurity strength A. Moreover, for a fixed A, a reduction in the spin gap by increasing the impurity concentration is also observed.
Resumo:
We present two integrable spin ladder models which possess a general free parameter besides the rung coupling J. The models are exactly solvable by means of the Bethe ansatz method and we present the Bethe ansatz equations. We analyze the elementary excitations of the models which reveal the existence of a gap for both models that depends on the free parameter. (C) 2003 American Institute of Physics.
Resumo:
E-cadherin-catenin complexes mediate cell-cell adhesion on the basolateral membrane of epithelial cells. The cytoplasmic tail of E-cadherin supports multiple protein interactions, including binding of beta-catenin at the C terminus and of p120(ctn) to the juxtamembrane domain. The temporal assembly and polarized trafficking of the complex or its individual components to the basolateral membrane are not fully understood. In Madin-Darby canine kidney cells at steady state and after treatment with cycloheximide or temperature blocks, E-cadherin and beta-catenin localized to the Golgi complex, but p120ctn was found only at the basolateral plasma membrane. We previously identified a dileucine sorting motif (Leu(586)-Leu(587), termed S1) in the juxtamembrane domain of E-cadherin and now show that it is required to target full-length E-cadherin to the basolateral membrane. Removal of S1 resulted in missorting of E-cadherin mutants (EcadDeltaS1) to the apical membrane; beta-catenin was simultaneously missorted and appeared at the apical membrane. p120(ctn) was not mistargeted with EcadDeltaS1, but could be recruited to the E-cadherin-catenin complex only at the basolateral membrane. These findings help define the temporal assembly and sorting of the E-cadherin-catenin complex and show that membrane recruitment of p120(ctn) in polarized cells is contextual and confined to the basolateral membrane.
Resumo:
This paper presents a comprehensive study of sludge floc characteristics and their impact on compressibility and settleability of activated sludge in full scale wastewater treatment processes. The sludge flocs were characterised by morphological (floc size distribution, fractal dimension, filament index), physical (flocculating ability, viscosity, hydrophobicity and surface charge) and chemical (polymeric constituents and metal content) parameters. Compressibility and settleability were defined in terms of the sludge volume index (SVI) and zone settling velocity (ZSV). The floc morphological and physical properties had important influence on the sludge compressibility and settleability. Sludges containing large flocs and high quantities of filaments, corresponding to lower values of fractal dimension (D-f), demonstrated poor compressibility and settleability. Sludge flocs with high flocculating ability had lower SVI and higher ZSV, whereas high values of hydrophobicity, negative surface charge and viscosity of the sludge flocs correlated to high SVI and low ZSV. The quantity of the polymeric compounds protein. humic substances and carbohydrate in the sludge and the extracted extracellular polymeric substances (EPS) had significant positive correlations with SVI. The ZSV was quantitatively independent of the polymeric constituents. High concentrations of the extracted EPS were related to poor compressibility and settleability. The cationic ions Ca, Mg, Al and Fe in the sludge improved significantly the sludge compressibility and settleability. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Variation in the concentration of virus in different parts of the plant has implications for virus-indexing programs. To allow more reliable detection of Sugarcane mosaic virus (SCMV), the distribution of the virus in sugarcane plants after artificial inoculation was studied using a reverse transcription polymerase chain reaction (RT-PCR) assay. Leaves of susceptible and moderately resistant sugarcane were mechanically inoculated with SCMV 6 weeks after planting. Weekly for 8 weeks after inoculation, plants were examined for mosaic symptoms and samples of leaves, roots and tillers were tested by RT-PCR to detect virus. SCMV moved from the point of inoculation to younger leaves, roots and tillers and eventually to leaves that emerged prior to inoculation. The pattern of SCMV distribution in moderately resistant and susceptible cultivars was not substantially different. However, the virus moved more slowly in the moderately resistant than in the susceptible cultivar. Young leaves proved to be the most suitable tissue for testing.
Resumo:
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto-enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with Fe-II, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.
Resumo:
A bituminous coal was pyrolyzed in a nitrogen stream in an entrained flow reactor at various temperatures from 700 to 1475 degreesC. Char samples were collected at different positions along the reactor. Each collected sample was oxidized nonisothermally in a TGA for reactivity determination. The reactivity of the coal char was found to decrease rapidly with residence time until 0.5 s, after which it decreased only slightly. On the bases of the reactivity data at various temperatures, a new approach was utilized to obtaining the true activation energy distribution function for thermal annealing without the assumption of any distribution function form or a constant preexponential factor. It appears that the true activation energy distribution function consists of two separate parts corresponding to different temperature ranges, suggesting different mechanisms in different temperature ranges. Partially burnt coal chars were also collected along the reactor when the coal was oxidized in air at various temperatures from 700 to 1475 degreesC. The collected samples were analyzed for the residual carbon content and the specific reaction rate was estimated. The characteristic time of thermal deactivation was compared with that of oxidation under realistic conditions. The characteristic times were found to be close to each other, indicating the importance of thermal deactivation during combustion of the coal studied.
Resumo:
Bakeriella lata sp. nov. (Brazil, Rondônia), Bakeriella aurata sp. nov. (Brazil, Amazonas) and Bakeriella sulcaticeps sp. nov. (Brazil, Amazonas) are described and illustrated. New geographic records and variation data for B. cristata Evans, 1964, B. floridana Evans, 1964, B. flavicornis Kieffer, 1910, B. incompleta Azevedo, 1994, B. mira Evans, 1997, B. montivaga (Kieffer, 1910), B. olmeca Evans, 1964 and B. subcarinata Evans, 1965 are provided. The male of B. incompleta is described for the first time.
Resumo:
Poly(vinylidene fluoride-trifluoethylene) electrospun membranes were obtained from a blend of dimethylformamide (DMF) and methylethylketone (MEK) solvents. The inclusion of the MEK to the solvent system promotes a faster solvent evaporation allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. Several processing parameters were systematically changed to study their influence on fiber dimensions. Applied voltage and inner needle diameter do not have large influence on the electrospun fiber average diameter but in the fiber diameter distribution. On the other hand, the increase of the distance between the needle tip to collector results in fibers with larger average diameter. Independently on the processing conditions, all mats are produced in the electroactive phase of the polymer. Further, MC-3T3-E1cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.
Resumo:
Poly(hydroxybutyrate) (PHB) obtained from sugar cane was dissolved in a blend of chloroform and dimethylformamide (DMF) and electrospun at 40 ºC. By adding DMF to the solution, the electrospinning process for the PHB polymer becomes more stable, allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. The influence of processing parameters on fiber size and distribution was systematically studied. It was observed that an increase of tip inner diameter promotes a decrease of the fiber average size and a broader distribution. On the other hand, an increase of the electric field and flow rate produces an increase of fiber diameter until a maximum of ~2.0 m, but for electric fields higher than 1.5 kV.cm-1, a decrease of the fiber diameter was observed. Polymer crystalline phase seems to be independent of the processing conditions and a crystallinity degree of 53 % was found. Moreover, thermal degradation of the as-spun membrane occurs in single step degradation with activation energy of 91 kJ/mol. Furthermore, MC-3T3-E1 cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.