925 resultados para Soliton propagation
Resumo:
Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation we show that a bright soliton can be stabilized in a trapless three-dimensional attractive Bose-Einstein condensate (BEC) by a rapid periodic temporal modulation of scattering length alone by using a Feshbach resonance. This scheme also stabilizes a rotating vortex soliton in two dimensions. Apart from possible experimental application in BEC, the present study suggests that the spatiotemporal solitons of nonlinear optics in three dimensions can also be stabilized in a layered Kerr medium with sign-changing nonlinearity along the propagation direction.
Resumo:
The symmetry structure of the non-Abelian affine Toda model based on the coset SL(3)/SL(2) circle times U(1) is studied. It is shown that the model possess non-Abelian Noether symmetry closing into a q-deformed SL(2) circle times U(1) algebra. Specific two-vertex soliton solutions are constructed.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to predict and study bright solitons in a degenerate fermion-fermion mixture in a quasi-one-dimensional cigar-shaped geometry using variational and numerical methods. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances there cannot be bright solitons for repulsive interspecies fermion-fermion interactions. However, stable bright solitons can be formed for a sufficiently attractive interspecies interaction. We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton trains. These fermionic solitons can be formed and studied in laboratory with present technology.
Resumo:
We consider a real Lagrangian off-critical submodel describing the soliton sector of the so-called conformal affine sl(3)((1)) Toda model coupled to matter fields. The theory is treated as a constrained system in the context of Faddeev-Jackiw and the symplectic schemes. We exhibit the parent Lagrangian nature of the model from which generalizations of the sine-Gordon (GSG) or the massive Thirring (GMT) models are derivable. The dual description of the model is further emphasized by providing the relationships between bilinears of GMT spinors and relevant expressions of the GSG fields. In this way we exhibit the strong/weak coupling phases and the (generalized) soliton/particle correspondences of the model. The sl(n)((1)) case is also outlined. (C) 2002 American Institute of Physics.
Resumo:
Asymptotic behavior of initially large and smooth pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrodinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions-intensity rho(0)(x) of the initial pulse and its initial chirp v(0)(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.
Resumo:
We derive the soliton matrices corresponding to an arbitrary number of higher-order normal zeros for the matrix Riemann-Hilbert problem of arbitrary matrix dimension, thus giving the complete solution to the problem of higher-order solitons. Our soliton matrices explicitly give all higher-order multisoliton solutions to the nonlinear partial differential equations integrable through the matrix Riemann-Hilbert problem. We have applied these general results to the three-wave interaction system, and derived new classes of higher-order soliton and two-soliton solutions, in complement to those from our previous publication [Stud. Appl. Math. 110, 297 (2003)], where only the elementary higher-order zeros were considered. The higher-order solitons corresponding to nonelementary zeros generically describe the simultaneous breakup of a pumping wave (u(3)) into the other two components (u(1) and u(2)) and merger of u(1) and u(2) waves into the pumping u(3) wave. The two-soliton solutions corresponding to two simple zeros generically describe the breakup of the pumping u(3) wave into the u(1) and u(2) components, and the reverse process. In the nongeneric cases, these two-soliton solutions could describe the elastic interaction of the u(1) and u(2) waves, thus reproducing previous results obtained by Zakharov and Manakov [Zh. Eksp. Teor. Fiz. 69, 1654 (1975)] and Kaup [Stud. Appl. Math. 55, 9 (1976)]. (C) 2003 American Institute of Physics.
Resumo:
The dressing and vertex operator formalism is emploied to study the soliton solutions of the N = I super mKdV and sinh-Gordon models. Explicit two and four vertex solutions are constructed. The relation between the soliton solutions of both models is verified. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Employing Hirota's method, a class of soliton solutions for the N = 2 super mKdV equations is proposed in terms of a single Grassmann parameter. Such solutions are shown to satisfy two copies of N = 1 supersymmetric mKdV equations connected by nontrivial algebraic identities. Using the super Miura transformation, we obtain solutions of the N = 2 super KdV equations. These are shown to generalize solutions derived previously. By using them KdV/sinh-Gordon hierarchy properties we generate the solutions of the N = 2 super sinh-Gordon as well.
Resumo:
In this work we apply a nonperturbative approach to analyze soliton bifurcation ill the presence of surface tension, which is a reformulation of standard methods based on the reversibility properties of the system. The hypothesis is non-restrictive and the results can be extended to a much wider variety of systems. The usual idea of tracking intersections of unstable manifolds with some invariant set is again used, but reversibility plays an important role establishing in a geometrical point of view some kind of symmetry which, in a classical way, is unknown or nonexistent. Using a computer program we determine soliton solutions and also their bifurcations ill the space of parameters giving a picture of the chaotic structural distribution to phase and amplitude shift phenomena. (C) 2009 Published by Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x(+) = 0 to x(+) > 0. It corresponds to the definition of the time ordering operation in the light front time x(+). We calculate the light-front Green's function for 2 interacting bosons propagating forward in x(+). We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we discuss the algebraic construction of the mKdV hierarchy in terms of an affine Lie algebra (s) over capl(2). An interesting novelty araises from the negative even grade sector of the affine algebra leading to nonlinear integro-differential equations admiting non-trivial vacuum configuration. These solitons solutions are constructed systematically from generalization of the dressing method based on non zero vacua. The sub-hierarchies admiting such class of solutions are classified.