995 resultados para SnO2 nanoparticles
Resumo:
A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (NIPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium-tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet-visiblenear-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV-vis-NIR.
Resumo:
Gold nanoparticles in polyelectrolyte multilayers film can be easily prepared by repeating immersion of a substrate in poly(diallyl dimethylammonium) chloride (PDDA)-AuCl4- complexes solution followed by reduction Au3+ through heating. UV-vis spectroscopy, cyclic voltammetry (CV) and tapping-mode atomic force microscopy (AFM) are used to confirm the successful construction of the polyelectrolyte multilayers film and the formation of gold nanoparticles. The multilayers film shows electrocatalytic activity to dioxygen reduction.
Resumo:
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer-by-layer growth of Pt layers on An NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(11) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air-saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as-prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring-disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four-electron reduction on the as-prepared modified electrode with 5 Pt layers and first charge transfer is the rate-determining step.
Resumo:
Gold nanoparticles were deposited onto 2-mercaptoethylamine (MEA)-assembled planar gold thin film to construct gold nanoparticles modified electrode by virtue of a solution-based self-assembly strategy. Subsequently, 3-mercaptopropionic acid (MPA)-bridged copper hexacyanoferrate (CuHCF) multilayers were constructed on the as-prepared gold nanoparticles modified electrode. The resulted multilayer nanostructures were investigated by electrochemical surface plasmon resonance (EC-SPR) and atomic force microscopy (AFM) with primary emphasis upon the effect of the gold nanoparticles on the MPA/CuHCF multilayers growth and their surface morphology. Compared with the multilayer system on a planar gold electrode, the different electrochemical and optical properties might result from higher curvature effect and extraordinary surface-to-volume ratio characteristic of gold nanoparticles and the nanoparticle-selective growth of CuHCF. A dendrimer-like assembly process was proposed to explain the experiment results. This new motif of multilayer on the gold nanoparticles modified electrode was different from that of on a planar gold electrode, indicating a potential application of EC-SPR technique in the study of nanocomposite materials.
Resumo:
A detailed investigation on the adsorption behavior of Neutral Red (NR) molecules on mercaptoethane sulfonate-monolayer protected gold clusters (MES-MPCs) has been conducted by the spectroscopic method. It is found that cationic NR molecules are adsorbed on the negatively charged MPCs surfaces via electrostatic attractive forces. The absorption study shows that the optical properties of NR molecules are significantly influenced upon the adsorption. Based on the electrostatic adsorption nature and the excellent stability of MES-MPCs against the electrolytes, this association can be released by the addition of electrolyte salts, which can be monitored by both absorption and fluorescence spectroscopy. In addition, dication Ca2+ is found to be more effective in the release of NR than univalent Na+. Moreover, the MES-MPCs exert energy transfer quenching of NR fluorescence by both static and dynamic quenching. However, static quenching seems to be the dominating quenching mechanism. Furthermore, this energy transfer quenching exhibits strong dependence of Au core size, and 5.0 nm MPCs show stronger ability in quenching the NR fluorescence than that of 2.7 nm MPCs.
Resumo:
A new methodology is described for the one-step aqueous preparation of highly monodisperse gold nanoparticles with diameters below 5 nm using thioether- and thiol-functionalized polymer ligands. The particle size and size distribution was controlled by subtle variation of the polymer structure. It was shown that poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) were the most effective stabilizing polymers in the group studied and that relatively low molar mass ligands (similar to 2500 g/mol) gave rise to the narrowest particle size distributions. Particle uniformity and colloidal stability to changes in ionic strength and pH were strongly affected by the hydrophobicity of the ligand end group. "Multidentate" thiol-terminated ligands were produced by employing dithiols and tetrathiols as chain-transfer agents, and these ligands gave rise to particles with unprecedented control over particle size and enhanced colloidal stability. It was found throughout that dynamic light scattering (DLS) is a very useful corroboratory technique for characterization of these gold nanoparticles in addition to optical spectroscopy and TEM.
Resumo:
In this article, surface enhanced Raman scattering (SERS) of different concentrations of brilliant green (13G) on Ag nanoparticles (AgNPs) has been investigated. The results indicate that only 10(-12) M BG can be detected on AgNPs while as low as 10(-11) M BG can be detected upon the activation of AgNPs by chloride ions. The additional improvement of the detection of BG mainly derives from the increase of the electromagnetic field around AgNPs and partially from the reorientation of BG on AgNPs induced by chloride ions, which was proved by the different spectra feature in the two systems. Adsorption of BG on AgNPs has also been demonstrated in applications of living cells as optical probes based on SERS, indicating that dye-AgNPs can probe the local environment in the living cells. The related cytotoxicity measurements demonstrated that BG-AgNPs produced little cytotoxicity to the cells, which shows great potential in biornedical applications of BG labeled-AgNPs for SERS nanosensors in cells as optical probes. Meanwhile, SERS spectra of BG on AgNPs in the presence chloride ions are expected to be used in living cells as more sensitive optical probes.
Resumo:
Organic-inorganic hybrids containing luminescent lanthanide complex Eu(tta)(3)Phen (tta = thenoyltrifluoroaceton, phen = 1,10-phenanthroline) and silver nanoparticles have been prepared via mixing rare earth complex and nanoparticles with the precursors of di-ureasil using a sol-gel process. The obtained hybrid materials with transparent and elastomeric features were characterized by transmission electron microscope, solid-state Si-29 magic-angle spinning NMR spectra, diffuse reflectance, UV-visible absorption and photoluminescence spectroscopies. The effect of the silver nanoparticles on the luminescence properties was investigated. The experimental results showed that the luminescence intensity of the Eu(tta)(3)phen complex could be enhanced by less than ca. 9.5 nM of silver nanoparticles with the average diameter of 4 nm, and reached its maximum at the concentration of ca. 3.6 nM. Further increasing the concentration of the silver nanoparticles (> 9.5 nM) made the luminescence quenched. The enchancement and quench mechnism was discussed.
Resumo:
A novel third-generation biosensor for hydrogen peroxide (H2O2) was developed by self-assembling gold nanoparticles to hollow porous thiol-functionalized poly(divinylbenzene-co-acrylic acid) (DVB-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in hollow porous thiol-functionalized poly(DVB-co-AA) nanosphere latex to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups of the nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The resulting biosensor showed a wide linear range of 1.0 mu M-8.0 mM and a detection limit of 0.5 mu M estimated at a signal-to-noise ratio of 3. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.
Resumo:
The deposition and coating of GdVO4: Eu3+ nanoparticles on spherical silica was carried out using a simple sol - gel method at low temperature. The GdVO4: Eu3+-coated silica composites obtained were characterized by differential thermal analysis (DTA), thermogravimetric (TG) analysis, x-ray diffraction (XRD), Fourier-transform IR spectroscopy (FT-IR), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), photoluminescence spectra, and kinetic decay. It is found that the similar to 5 nm GdVO4: Eu3+ nanoparticles coating the silica spheres are crystal in the as-prepared samples and the crystallinity increases with increasing annealing temperature. The composites obtained are spherical in shape with an average size of 100 nm. The GdVO4: Eu3+ nanoparticles are linked with silica cores by a chemical bond. The photoluminescence spectra of the obtained GdVO4: Eu3+-coated silica composites are similar to those of the bulk GdVO4: Eu3+ phosphors. The strongest peak is near 617 nm, which indicates that Eu3+ is located in the low symmetry site with non-inversion centre.