859 resultados para Sistemas de potencia-Modelos matemáticos
Resumo:
We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study very large sizes, 483. A finite-size scaling analysis indicates that the data are compatible with the most economical scenario: a common transition temperature for spins and chiralities.
Resumo:
We perform numerical simulations, including parallel tempering, a four-state Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the critical temperature and the value of the critical exponents. Nevertheless, the extrapolation to infinite volume is hampered by strong scaling corrections. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the “random permutation” Potts glass.
Resumo:
In the Monte Carlo simulation of both lattice field theories and of models of statistical mechanics, identities verified by exact mean values, such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well-known and sensitive tests of thermalization bias as well as checks of pseudo-random-number generators. We point out that they can be further exploited as control variates to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the twodimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.
Resumo:
We present Tethered Monte Carlo, a simple, general purpose method of computing the effective potential of the order parameter (Helmholtz free energy). This formalism is based on a new statistical ensemble, closely related to the micromagnetic one, but with an extended configuration space (through Creutz-like demons). Canonical averages for arbitrary values of the external magnetic field are computed without additional simulations. The method is put to work in the two-dimensional Ising model, where the existence of exact results enables us to perform high precision checks. A rather peculiar feature of our implementation, which employs a local Metropolis algorithm, is the total absence, within errors, of critical slowing down for magnetic observables. Indeed, high accuracy results are presented for lattices as large as L = 1024.
Resumo:
This paper describes JANUS, a modular massively parallel and reconfigurable FPGA-based computing system. Each JANUS module has a computational core and a host. The computational core is a 4x4 array of FPGA-based processing elements with nearest-neighbor data links. Processors are also directly connected to an I/O node attached to the JANUS host, a conventional PC. JANUS is tailored for, but not limited to, the requirements of a class of hard scientific applications characterized by regular code structure, unconventional data manipulation instructions and not too large data-base size. We discuss the architecture of this configurable machine, and focus on its use on Monte Carlo simulations of statistical mechanics. On this class of application JANUS achieves impressive performances: in some cases one JANUS processing element outperfoms high-end PCs by a factor ≈1000. We also discuss the role of JANUS on other classes of scientific applications.
Resumo:
The out of equilibrium evolution for an Edwards‐Anderson spin glass is followed for a tenth of a second, a long enough time to let us make safe predictions about the behaviour at experimental scales. This work has been made possible by Janus, an FPGA based special purpose computer. We have thoroughly studied the spin glass correlation functions and the growth of the coherence length for L = 80 lattices in 3D. Our main conclusion is that these spin glasses follow noncoarsening dynamics, at least up to the experimentally relevant time scales.
Resumo:
We study numerically the nonequilibrium dynamics of the Ising spin glass, for a time spanning 11 orders of magnitude, thus approaching the experimentally relevant scale (i.e., seconds). We introduce novel analysis techniques to compute the coherence length in a model-independent way. We present strong evidence for a replicon correlator and for overlap equivalence. The emerging picture is compatible with noncoarsening behavior.
Resumo:
In TJ-II stellarator plasmas, in the electron cyclotron heating regime, an increase in the ion temperature is observed, synchronized with that of the electron temperature, during the transition to the core electron-root confinement (CERC) regime. This rise in ion temperature should be attributed to the joint action of the electron–ion energy transfer (which changes slightly during the CERC formation) and an enhancement of the ion confinement. This improvement must be related to the increase in the positive electric field in the core region. In this paper, we confirm this hypothesis by estimating the ion collisional transport in TJ-II under the physical conditions established before and after the transition to CERC. We calculate a large number of ion orbits in the guiding-centre approximation considering the collisions with a background plasma composed of electrons and ions. The ion temperature profile and the thermal flux are calculated in a self-consistent way, so that the change in the ion heat transport can be assessed.
Resumo:
We investigate the critical properties of the four-state commutative random permutation glassy Potts model in three and four dimensions by means of Monte Carlo simulations and a finite-size scaling analysis. By using a field programmable gate array, we have been able to thermalize a large number of samples of systems with large volume. This has allowed us to observe a spin-glass ordered phase in d=4 and to study the critical properties of the transition. In d=3, our results are consistent with the presence of a Kosterlitz-Thouless transition, but also with different scenarios: transient effects due to a value of the lower critical dimension slightly below 3 could be very important.
Resumo:
Este trabalho apresenta um estudo da solidificação de metais puros utilizando o modelo de campo de fases. O modelo é utilizado para simular a solidificação com o intuito de obter a morfologia da interface sólido-líquido sob diversas condições de transferência de calor. Foram realizados testes de validação comparando as morfologias da interface sólido-líquido obtida com as morfologias apresentadas em trabalhos anteriores para os casos bi e tridimensionais. O modelo do campo de fases adotado consiste principalmente de duas equações diferenciais: uma para calcular a variável de campo de fases e outra para calcular o campo de temperaturas. As equações foram solucionadas numericamente para um oitavo do domínio devido a simetria do problema. Os cálculos do modelo indicam que um sólido esférico com um raio inicial menor que o raio crítico de nucleação refunde. Entretanto uma esfera de raio maior cresce. Quando o sólido inicial cresce em uma malha numérica relativamente grosseira, a forma do sólido desvia da forma esférica devido perturbações na interface sólido-líquido. Quando a malha é refinada, as perturbações não são detectadas; contudo, quando introduzidas artificialmente as perturbações crescem e distorcem o formato esférico.
Resumo:
As culturas do milho e da soja respondem pela maior parte da produção nacional de grãos, predominando o sistema de plantio direto. Para uma semeadura direta de qualidade, o bom aterramento do sulco é indispensável, pois garante um ambiente adequado às sementes. Neste sentido, é importante estimar a mobilização de solo promovida por uma haste sulcadora estreita durante esta operação. O modelo analítico existente visa representar a mobilização do solo no sistema de plantio convencional. Como consequência, há situações em que este não pode se aplicado, como no caso de hastes sulcadoras estreitas utilizadas em semeadoras de plantio direto. Nestas situações, o mecanismo de falha do solo pode se alterar, assumindo um comportamento não modelado na literatura. Essa pesquisa propõe um modelo fuzzy capaz de representar estas situações, aproveitando conhecimento da teoria de mecânica dos solos e da análise de resultados experimentais. No modelo proposto, parte das regras descrevem situações não abrangidas pelo modelo analítico, as quais foram formuladas a partir da estimativa das prováveis áreas de solo mobilizado. O modelo fuzzy foi testado com dados de experimentos conduzidos durante a pesquisa, em duas condições de granulometria de solo (arenoso e argiloso). O modelo proposto reproduziu as tendências observadas nos dados experimentais, mas superestimou os valores de área observados, sendo esse efeito bem mais intenso para os dados do experimento em solo arenoso. A superestimativa ocorreu devido à soma de diversos fatores. Um deles é a diferença entre as leituras experimentais, as quais consideram apenas o solo realmente movimentado, e a premissa do modelo analítico, que considera toda a área de solo incluindo aquela cisalhada, porém não mobilizada. Outro fator foi devido ao efeito do disco de corte da palha, que pré-cisalha o solo à frente da ferramenta. No ensaio em solo arenoso os valores observados de área de solo mobilizado foram menores que os esperados, intensificando o efeito de superestimativa do modelo fuzzy, sendo que este efeito não representa uma deficiência deste modelo.
Resumo:
We present the first detailed numerical study in three dimensions of a first-order phase transition that remains first order in the presence of quenched disorder (specifically, the ferromagnetic-paramagnetic transition of the site-diluted four states Potts model). A tricritical point, which lies surprisingly near the pure-system limit and is studied by means of finite-size scaling, separates the first-order and second-order parts of the critical line. This investigation has been made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that plague the standard approach. Entropy, rather than free energy, is the basic object in this approach that exploits a recently introduced microcanonical Monte Carlo method.
Resumo:
A unidade de coqueamento retardado é um processo térmico de conversão, utilizado pelas refinarias, para converter cargas residuais em produtos de baixo peso molecular e com alto valor agregado (gases, nafta e gasóleo) e coque verde de petróleo. Um pequeno aumento no rendimento líquido da unidade de coqueamento retardado proporciona benefícios económicos consideráveis, especialmente no destilado líquido. A concorrência no mercado, as restrições sobre as especificações do produto e gargalos operacionais exigem um melhor planejamento da produção. Portanto, o desenvolvimento de novas estratégias e modelos matemáticos, focados em melhores condições de operação do processo industrial e formulações de produtos, é essencial para alcançar melhores rendimentos e um acompanhamento mais preciso da qualidade do produto. Este trabalho tem como objetivo o desenvolvimento de modelo matemático do conjunto forno-reator do processo de coqueamento, a partir de informações obtidas em uma planta industrial. O modelo proposto é baseado na caracterização da carga e dos produtos em pseudocomponentes, modelos cinéticos de grupos e condições de equilíbrio liquido-vapor. Além disso, são discutidos os principais desafios para o desenvolver o modelo matemático do forno e do reator, bem como a caracterização rigorosa do resíduo de vácuo e dos produtos para determinar os parâmetros que afetam a morfologia do coque e a zona de reação no interior do reator de coque.
Resumo:
We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. The measured performance on one such processor is comparable to O(100) carefully programmed high-end PCs: it turns out to be even better for some selected spin models. We describe here codes that we are currently executing on the IANUS massively parallel FPGA-based system.
Resumo:
We present a detailed numerical study on the effects of adding quenched impurities to a three dimensional system which in the pure case undergoes a strong first order phase transition (specifically, the ferromagnetic/paramagnetic transition of the site-diluted four states Potts model). We can state that the transition remains first-order in the presence of quenched disorder (a small amount of it) but it turns out to be second order as more impurities are added. A tricritical point, which is studied by means of Finite-Size Scaling, separates the first-order and second-order parts of the critical line. The results were made possible by a new definition of the disorder average that avoids the diverging-variance probability distributions that arise using the standard methodology. We also made use of a recently proposed microcanonical Monte Carlo method in which entropy, instead of free energy, is the basic quantity.