998 resultados para Semiconductor doping
Resumo:
The butt-coupling between a semiconductor laser diode and a fiber Bragg grating external cavity acts a key roll on the laser characteristics. The scatter matrix method considering the butt-coupling efficiency is used to analyze the butt-coupling between them. It is found that the butt-coupling distance and coupling efficiency determine the laser characteristics. For strong feedback, the single lasing wavelength changes in the reflection bandwidth of the effective reflectivity ( approximately the Bragg region of the fiber Bragg grating) as the distances change. For weak feedback condition, some different results are obtained. The SMSRs in the two conditions are presented and analyzed. These results can provide important design guidance of device parameters for the practical fabrication.
Resumo:
The theoretical investigation of the coupling efficiency of a laser diode to a single mode fiber via a hemispherical lens on the tip of the tapered fiber in the presence of possible transverse offset and angular mismatch is reported.Without the misalignment,coupling efficiency increases with the decreasing of taper length.With the misalignment,this relation is that the coupling efficiency decreases with each kind of offset.
Resumo:
A novel 800nm Bragg mirror type of semiconductor saturable absorption mirror with low temperature method and surface state method combined absorber is presented.With which passive Kerr lens mode locking of Ti∶Al2O3 laser pumped by argon ion laser is realized,which produces pulses as short as 40fs.The spectrum bandwidth is 56nm,which means that it can support the modelocking of 20fs.The pulse frequency is 97.5MHz;average output power is 300mW at the pump power of 4.45W.
Resumo:
The results of second-order Raman-scattering experiments on n- and p-type 4H-SiC are presented,covering the acoustic and the optical overtone spectral regions.Some of the observed structures in the spectra are assigned to particular phonon branches and the points in the Brillouin zone from which the scattering originates.There exists a doublet at 626/636cm-1 with energy difference about 10cm-1 in both n- and p-type 4H-SiC,which is similar to the doublet structure with the same energy difference founded in hexagonal GaN,ZnO, and AlN.The cutoff frequency at 1926cm-1 of the second-order Raman is not the overtone of the A1(LO) peak of the n-type doping 4H-SiC,but that of the undoping one.The second-order Raman spectrum of 4H-SiC can hardly be affected by doping species or doping density.
Resumo:
A semiconductor optical amplifier gate based on tensile-strained quasi-bulk InGaAs is developed. At injection current of 80mA,a 3dB optical bandwidth of more than 85nm is achieved due to dominant band-filling effect.Moreover, the most important is that very low polarization dependence of gain (<0. 7dB),fiber-to-fiber lossless operation current (70~90mA) and a high extinction ratio (>50dB) are simultaneously obtained over this wide 3dB optical bandwidth (1520~1609nm) which nearly covers the spectral region of the whole C band (1525~1565nm)and the whole L band (1570~ 1610nm). The gating time is also improved by decreasing carrier lifetime. The wideband polarization-insensitive SOA-gate is promising for use in future dense wavelength division multiplexing (DWDM) communication systems.
Resumo:
Stable continuous-wave passive mode-locking of diode-end-pumped Nd:GdVO4 and Nd:YAG lasers withsemiconductor saturable absorber mirrors (SESAMs) are reported. The comparative study shows that theNd:GdVO4 crystal is efficient to decrease the Q-switched mode-locking tendency, and easier to continuous-wave (CW) mode lock than Nd:YAG.
Resumo:
Equilateral triangle semiconductor microcavities with tensile-strained InGaAsP multi-quantum-well asthe active region are fabricated by the inductively coupled plasma (ICP) etching technique. The modecharacteristics of the fabricated microcavities are investigated by photoluminescence, and enhanced peaksof the photoluminescence spectra corresponding to the fundamental transverse modes are observed formicrocavities with side lengths of 5 and 10 μm. The mode wavelength spacings measured experimentallycoincide very well with those obtained by the theoretical formulae.
Resumo:
The theoretical optimization of tensile strained InGaAsP/InGaAsP MQW for 1.5μm window polarization-independent semiconductor optical amplifier is reported. The valence-band structure of the MQw is calculated by using K·P method, in which 6×6 Luttinger effective-mass Hamiltonian is taken into account. LThe polarization dependent optical gain is calculated with various well width, strain, and carrier density.
Resumo:
A fitting process is used to measure the cavity loss and the quasi-Fermi-level separation for Fabry- Perot semiconductor lasers. From the amplified spontaneous emission (ASE) spectrum, the gain spectrum and single-pass ASE obtained by the Cassidy method are applied in the fitting process. For a 1550nm quantum well InGaAsP ridge waveguide laser, the cavity loss of about ~24cm~(-1) is obtained.
Resumo:
Properties of Fe-doped semi-insulating (SI) InP with different iron concentrations are studied by using Hall effect, current-voltage (I-V), photoluminescence spectroscopy (PL) and photocurrent spectroscopy (PC) measurements. I-V characteristics of SI InP strongly depend on Fe doping concentration. Fe doping concentration also influences optical properties and defective formation in as-grown SI InP. Band-gap narrowing phenomenon and defects in Fe doped SI InP are studied using PI and PC.
Resumo:
于2010-11-23批量导入
Resumo:
于2010-11-23批量导入
Resumo:
于2010-11-23批量导入
Resumo:
A single longitudinal mode and narrow line width external cavity semiconductor laser is proposed. It is constructed with a semiconductor laser, collimator, a flame grating, and current and temperature control systems. The one facet of semiconductor laser is covered by high transmission film, and another is covered by high reflection film. The flame grating is used as light feedback element to select the mode of the semiconductor laser. The temperature of the constructed external cavity semiconductor laser is stabilized in order of 10(-3)degreesC by temperature control system. The experiments have been carried out and the results obtained-the spectral fine width of this laser is compressed to be less than 1.4MHz from its original line-width of more than 1200GHz and the output stability (including power and mode) is remarkably enhanced.