977 resultados para School-based curriculum


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multidisciplinary learning, interdisciplinary learning and transdisciplinary learning are often used with a similar meaning, but the misunderstanding of these terms may cause a failure of defining learner needs and developing high quality learning design. In this article, the three terms are reviewed in line with learner engagement and are conceptualised according to different types and levels of interactivity. An undergraduate course, named Creative Industries: Making Connections, was designed to deliver various learning modules to over 1200 students from 11 different disciplines in a blended learning mode. A visual communication learning module in the course, in particular, challenges students as well as academic staff to experience transdisciplinary learning. A survey was conducted to evaluate students' learning experience in the visual communication learning module. The results of the survey bring up meaningful implications for the realisation of transdisciplinary learning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The artwork I created is to depict missing of face-to-face communication in this digital and information era. It can be seen that social network technologies have enhanced people-to-people communications and enriched their interactions. Yet, these inundated communication mediums have changed people’s preferences for communication through visual-driven interface. This has reduced people’s capabilities of communication skills including listening. Surprisingly, it was reported that 70 percent of young generations are non-auditory learners, influenced by the visual nature of communication (McCrindle, 2006). As a result, they are defined as a pragmatic generation focussed on outcomes and not processes. This serious and societal issue was drawn with a somewhat violent and aggressive form, yet its pop art style should enable audience to approach to the theme with a satirical and light way.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The artwork was created to respond to the exhibition theme, "DIGILOG+IN". It aimed to express the beauty when digital and analogue materials are combined. It visualised an organic harmony between digital and natural objects through digitalisation and builded a fantasy of digital world. However, there was a conceptual dilemma that a “digitalisation” of natural objects into a digital format should merely become a digital work. In other words, a harmony between digital and analogue (natural) can be only achieved through a digitalising process by removing intrinsic nature of analogues. Therefore, the substance of analogues no longer exists in a digitally visualised form, but is virtually represented. The title of art work “digitualisation” is a combined word with “digi-tal” and vir-tualisation”. It refers to a digitally virtualising the substance of natural objects. The artwork visualised the concept of digitualisation by using natural objects (flowers) that are merged within a virtual space (a building entrance foyer).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are only two ways to implement reform in an education system, namely through inservice education of existing teachers and preservice teacher education. Implementing the Australian Curriculum will require targeting both teachers and preservice teachers. Classroom teachers in their roles as mentors have a significant role to play for developing preservice teachers. What mentors do in their mentoring practices and what mentors think about mentoring will impact on the mentoring processes and ultimately reform outcomes. What are mentors’ reports on their mentoring of preservice teachers in science and mathematics? This mixed-method study presents mentors’ reports on their mentoring of primary preservice teachers (mentees) in mathematics (n=43) and science (n=29). Drawing upon a previously validated instrument (Hudson, 2007), this instrument was amended to allow mentors to report on their perceptions of their mentoring. A questionnaire elicited extended written responses that focused on: (1) the mentors’ rapport with their mentees, (2) successful mentoring strategies, (3) aspects that may lead the mentee to feel unsuccessful, and (4) ways to enhance their mentoring skills. Mentors claimed they mentored teaching mathematics more than science. However, 20% or more indicated they did not provide mentoring practices for 25 out of 34 survey items in the science and 9 out of 34 items in the mathematics. Educational reform will necessity mentors to be educated on effective mentoring practices so the mentoring process can be more purposeful. Indeed, mentors who have knowledge of such practices may address the potential issues of more than 20% of mentees not receiving these practices. These mentors also claimed that professional development on effective mentoring can enhance their skills. To ensure the greatest success for an Australian Curriculum will require targeting mentors for professional development in order to assist mentees’ development into the profession.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mentors are significant in shaping a preservice teacher’s practices. Developing common understandings about effective mentoring practices can assist the mentoring process. What are mentor educators’ practical ideas towards implementing a mentoring program? This mixed-method study involves surveys, questionnaires, and audio-taped focus group meetings on 14 mentor educators’ views on mentoring preservice primary teachers. This research aims to understand mentor educators’ motivations for mentoring, their views about what makes a good mentor, benefits for mentors, and issues or concerns for mentors and the mentoring process. It also focuses on determining professional development for mentors and troubleshooting potential problems. Findings revealed that these mentor educators were motivated into developing mentoring programs as a way to: (1) influence the quality of preservice teacher education (2) provide personal and professional development in mentoring, and (3) support mentors and the mentoring process within school settings. Outlining what makes a good mentor and benefits for mentors were consistent with the literature. However, these expert mentors also provided potential solutions (e.g., university support and professional development ideas) on issues such as knowing the mentee’s level of development and expectations, building a professional relationship prior to placement and the mentor’s dual role as confidant and assessor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding preservice teachers’ memories of their education may aid towards articulating high-impact teaching practices. This study describes 246 preservice teachers’ perceptions of their secondary science education experiences through a questionnaire and 28-item survey. ANOVA was statistically significant about participants’ memories of science with 15 of the 28 survey items. Descriptive statistics through SPSS further showed that a teacher’s enthusiastic nature (87%) and positive attitude towards science (87%) were regarded as highly memorable. In addition, explaining abstract concepts well (79%), and guiding the students’ conceptual development with practical science activities (73%) may be considered as memorable secondary science teaching strategies. Implementing science lessons with one or more of these memorable science teaching practices may “make a difference” towards influencing high school students’ positive long-term memories about science and their science education. Further research in other key learning areas may provide a clearer picture of high-impact teaching and a way to enhance pedagogical practices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Universities promote partnerships as an investment of social capital that may benefit communities. Mentoring of university students in schools has become key to induction of education workplace practices. One such arrangement is the mentoring of students from TAFE who endeavour to become teacher aides. However, there is no theoretical model for mentoring teacher aides and, similar to mentoring preservice teachers, such practices vary in quality and quantity. What are mentors’ perceptions of mentoring potential teacher aides within school settings? This mixed-method research involves a survey with extended responses. The aim is to determine practices and strategies for mentoring potential teacher aides (PTAs). Results indicated that PTAs require induction about the school culture and infrastructure, which includes ethics, values, operational plans, awareness of facilities and a range of other inductions that would aid the PTA’s work practices. Findings also revealed that many of the mentoring practices employed for preservice teachers may be used for mentoring PTAs in school settings. Indeed, mentors require personal attributes to facilitate the mentoring process. They also indicated outlining the education system requirements as fundamental to workplace operations. In addition, as most PTAs work with students in the classroom, the mentor’s pedagogical knowledge can further assist PTAs to develop an understanding of effective pedagogical practices, particularly for small groups or one-on-one sessions. Finally, a mentor’s modelling of practices and providing constructive feedback about the PTA’s practices can assist the development of workplace operations. In conclusion, the survey employed in this study may assist organisations to develop protocols of practice for workplace mentors. PTAs require mentors who are versed in effective mentoring practices that can more readily guide them towards success.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Malaysia’s Vision 2020 for enhancing its education system includes the development of scientific literacy commencing at the primary school level. This Vision focuses on using English as the Medium of Instruction (EMI) for teaching primary science, as Malaysia has English as a Foreign Language (EFL) in its curriculum. What changes need to occur in preservice teacher education programs for learning about primary science using EMI? This paper investigates the education of Malaysian preservice teachers for learning how to teach one strand in science education (i.e., space, primary astronomy) in an English-language context. Ninety-six second-year preservice teachers from two Malaysian institutes were involved in a 16-week “Earth and Space” course, half the course involved education about primary astronomy. Seventy-five of these preservice teachers provided written responses about the course and their development as potential teachers of primary astronomy using EMI. Preservice teacher assessments and multimedia presentations provided further evidence on learning how to teach primary astronomy. Many of these preservice teachers claimed that learning to teach primary astronomy needs to focus on teaching strategies, content knowledge with easy-to-understand concepts, computer simulations (e.g., Earth Centered Universe, Stellarium, Celestia), other ICT media, and field experiences that use naked-eye observations and telescopes to investigate celestial bodies. Although generally proficient in using ICT, they claimed there were EFL barriers for learning some new terminology. Nevertheless, powerpoints, animations, videos, and simulations were identified as effective ICT tools for providing clear visual representations of abstract concepts and ways to enhance the learning process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Curriculum demands continue to increase on school education systems with teachers at the forefront of implementing syllabus requirements. Education is reported frequently as a solution to most societal problems and, as a result of the world’s information explosion, teachers are expected to cover more and more within teaching programs. How can teachers combine subjects in order to capitalise on the competing educational agendas within school timeframes? Fusing curricula requires the bonding of standards from two or more syllabuses. Both technology and ICT complement the learning of science. This study analyses selected examples of preservice teachers’ overviews for fusing science, technology and ICT. These program overviews focused on primary students and the achievement of two standards (one from science and one from either technology or ICT). These primary preservice teachers’ fused-curricula overviews included scientific concepts and related technology and/or ICT skills and knowledge. Findings indicated a range of innovative curriculum plans for teaching primary science through technology and ICT, demonstrating that these subjects can form cohesive links towards achieving the respective learning standards. Teachers can work more astutely by fusing curricula; however further professional development may be required to advance thinking about these processes. Bonding subjects through their learning standards can extend beyond previous integration or thematic work where standards may not have been assessed. Education systems need to articulate through syllabus documents how effective fusing of curricula can be achieved. It appears that education is a key avenue for addressing societal needs, problems and issues. Education is promoted as a universal solution, which has resulted in curriculum overload (Dare, Durand, Moeller, & Washington, 1997; Vinson, 2001). Societal and curriculum demands have placed added pressure on teachers with many extenuating education issues increasing teachers’ workloads (Mobilise for Public Education, 2002). For example, as Australia has weather conducive for outdoor activities, social problems and issues arise that are reported through the media calling for action; consequently schools have been involved in swimming programs, road and bicycle safety programs, and a wide range of activities that had been considered a parental responsibility in the past. Teachers are expected to plan, implement and assess these extra-curricula activities within their already overcrowded timetables. At the same stage, key learning areas (KLAs) such as science and technology are mandatory requirements within all Australian education systems. These systems have syllabuses outlining levels of content and the anticipated learning outcomes (also known as standards, essential learnings, and frameworks). Time allocated for teaching science in obviously an issue. In 2001, it was estimated that on average the time spent in teaching science in Australian Primary Schools was almost an hour per week (Goodrum, Hackling, & Rennie, 2001). More recently, a study undertaken in the U.S. reported a similar finding. More than 80% of the teachers in K-5 classrooms spent less than an hour teaching science (Dorph, Goldstein, Lee, et al., 2007). More importantly, 16% did not spend teaching science in their classrooms. Teachers need to learn to work smarter by optimising the use of their in-class time. Integration is proposed as one of the ways to address the issue of curriculum overload (Venville & Dawson, 2005; Vogler, 2003). Even though there may be a lack of definition for integration (Hurley, 2001), curriculum integration aims at covering key concepts in two or more subject areas within the same lesson (Buxton & Whatley, 2002). This implies covering the curriculum in less time than if the subjects were taught separately; therefore teachers should have more time to cover other educational issues. Expectedly, the reality can be decidedly different (e.g., Brophy & Alleman, 1991; Venville & Dawson, 2005). Nevertheless, teachers report that students expand their knowledge and skills as a result of subject integration (James, Lamb, Householder, & Bailey, 2000). There seems to be considerable value for integrating science with other KLAs besides aiming to address teaching workloads. Over two decades ago, Cohen and Staley (1982) claimed that integration can bring a subject into the primary curriculum that may be otherwise left out. Integrating science education aims to develop a more holistic perspective. Indeed, life is not neat components of stand-alone subjects; life integrates subject content in numerous ways, and curriculum integration can assist students to make these real-life connections (Burnett & Wichman, 1997). Science integration can provide the scope for real-life learning and the possibility of targeting students’ learning styles more effectively by providing more than one perspective (Hudson & Hudson, 2001). To illustrate, technology is essential to science education (Blueford & Rosenbloom, 2003; Board of Studies, 1999; Penick, 2002), and constructing technology immediately evokes a social purpose for such construction (Marker, 1992). For example, building a model windmill requires science and technology (Zubrowski, 2002) but has a key focus on sustainability and the social sciences. Science has the potential to be integrated with all KLAs (e.g., Cohen & Staley, 1982; Dobbs, 1995; James et al., 2000). Yet, “integration” appears to be a confusing term. Integration has an educational meaning focused on special education students being assimilated into mainstream classrooms. The word integration was used in the late seventies and generally focused around thematic approaches for teaching. For instance, a science theme about flight only has to have a student drawing a picture of plane to show integration; it did not connect the anticipated outcomes from science and art. The term “fusing curricula” presents a seamless bonding between two subjects; hence standards (or outcomes) need to be linked from both subjects. This also goes beyond just embedding one subject within another. Embedding implies that one subject is dominant, while fusing curricula proposes an equal mix of learning within both subject areas. Primary education in Queensland has eight KLAs, each with its established content and each with a proposed structure for levels of learning. Primary teachers attempt to cover these syllabus requirements across the eight KLAs in less than five hours a day, and between many of the extra-curricula activities occurring throughout a school year (e.g., Easter activities, Education Week, concerts, excursions, performances). In Australia, education systems have developed standards for all KLAs (e.g., Education Queensland, NSW Department of Education and Training, Victorian Education) usually designated by a code. In the late 1990’s (in Queensland), “core learning outcomes” for strands across all KLA’s. For example, LL2.1 for the Queensland Education science syllabus means Life and Living at Level 2 standard number 1. Thus, a teacher’s planning requires the inclusion of standards as indicated by the presiding syllabus. More recently, the core learning outcomes were replaced by “essential learnings”. They specify “what students should be taught and what is important for students to have opportunities to know, understand and be able to do” (Queensland Studies Authority, 2009, para. 1). Fusing science education with other KLAs may facilitate more efficient use of time and resources; however this type of planning needs to combine standards from two syllabuses. To further assist in facilitating sound pedagogical practices, there are models proposed for learning science, technology and other KLAs such as Bloom’s Taxonomy (Bloom, 1956), Productive Pedagogies (Education Queensland, 2004), de Bono’s Six Hats (de Bono, 1985), and Gardner’s Multiple Intelligences (Gardner, 1999) that imply, warrant, or necessitate fused curricula. Bybee’s 5 Es, for example, has five levels of learning (engage, explore, explain, elaborate, and evaluate; Bybee, 1997) can have the potential for fusing science and ICT standards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last three years, in our Early Algebra Thinking Project, we have been studying Years 3 to 5 students’ ability to generalise in a variety of situations, namely, compensation principles in computation, the balance principle in equivalence and equations, change and inverse change rules with function machines, and pattern rules with growing patterns. In these studies, we have attempted to involve a variety of models and representations and to build students’ abilities to switch between them (in line with the theories of Dreyfus, 1991, and Duval, 1999). The results have shown the negative effect of closure on generalisation in symbolic representations, the predominance of single variance generalisation over covariant generalisation in tabular representations, and the reduced ability to readily identify commonalities and relationships in enactive and iconic representations. This chapter uses the results to explore the interrelation between generalisation and verbal and visual comprehension of context. The studies evidence the importance of understanding and communicating aspects of representational forms which allowed commonalities to be seen across or between representations. Finally the chapter explores the implications of the studies for a theory that describes a growth in integration of models and representations that leads to generalisation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assessment for Learning(AfL) case studies in a North Queensland school highlight the significance of the teacher-student relationship in creating a supportive culture within which students can negotiate new learner identities. AfL practices are school based evaluative practices that occur within the regular flow of teaching and learning with the purpose of informing and improving student learning to enhance learner autonomy. The identity of an autonomous learner is socially negotiated through participation in the community of practice of the class. Underpinned by a sociocultural perspective this research shows how AfL is manifested in action in its complexity and how positive teacher-student interactions can build bridges for students to move towards full participation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Engaging and motivating students in mathematics lessons can be challenging. The traditional approach of chalk and talk can sometimes be problematic. The new generation of educational robotics has the potential to not only motivate students but also enable teachers to demonstrate concepts in mathematics by connecting concepts with the real world. Robotics hardware and the software are becoming increasing more user-friendly and as a consequence they can be blended in with classroom activities with greater ease. Using robotics in suitably designed activities promotes a constructivist learning environment and enables students to engage in higher order thinking through hands-on problem solving. Teamwork and collaborative learning are also enhanced through the use of this technology. This paper discusses a model for teaching concepts in mathematics in middle year classrooms. It will also highlight some of the benefits and challenges of using robotics in the learning environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FIRST (For Inspiration and Recognition of Science and Technology) was initiated in the U.S. by accomplished inventor Dean Kamen in 1989. FIRST LEGO League (FLL) is one of the five competitions conducted by this organization. Dean’s vision was “to create a world where science and technology are celebrated……where young people dream of becoming science and technology heroes”. Each year FLL creates opportunities for young people aged 9-16 to engage in problem solving, teamwork and collaborative learning around a real-world theme. In the 2009/2010 season, more than 145,000 young people in over 50 countries participated in this competition. As they tackle the challenges; they construct and de-construct their own knowledge through hands-on engagement in a constructivist learning environment. The challenges are presented at least eight weeks before the competition. In most events the participants are judged in four categories - robot game, robot design, team project and team challenge. “Gracious professionalism” is an essential element of the competition. This paper compares and contrasts the FLL in China and Australia and presents some of the achievements of the event. It also highlights some of the models which have been adopted in the two countries to facilitate participation. The educational benefits of embedding the FLL will also be discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Throughout the world standards have been developed for teaching in particular key learning areas. These standards also present benchmarks that can assist to measure and compare results from one year to the next. There appears to be no benchmarks for mentoring. An instrument devised to measure mentees’ perceptions of their mentoring in primary science was administered to 304 preservice teachers in Turkey. Results indicated that the majority of mentees perceived they received mentoring practices, however, 20% or more claimed they had not received 24 of the 34 practices outlined on the researchbased survey. Establishing benchmarks for mentoring practices may assist educators to identify needs and developing programs that address these needs. This survey instrument can aid the identification of mentoring practices through the recipient’s perspective for advancing mentoring, which may ultimately have an effect on improving teaching practices.