975 resultados para Scanning Electronic Mirror


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic state in ultrathin gold nanowires is tuned by careful engineering of the device architecture via a chemical methodology. The electrons are localized to an insulating state (showing variable range hopping transport) by simply bringing them close to the substrate, while the insertion of an interlayer leads to a Tomonaga Luttinger liquid state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CoFe2O4 nanoparticles were prepared by solution combustion method. The nanoparticle are characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). PXRD reveals single phase, cubic spinel structure with Fd (3) over barm (227) space group. SEM micrograph shows the particles are agglomerated and porous in nature. Electron paramagnetic resonance spectrum exhibits a broad resonance signal g=2.150 and is attributed to super exchange between Fe3+ and Co2+. Magnetization values of CoFe2O4 nanoparticle are lower when compared to the literature values of bulk samples. This can be attributed to the surface spin canting due to large surface-to-volume ratio for a nanoscale system. The variation of dielectric constant, dielectric loss, loss tangent and AC conductivity of as-synthesized nano CoFe2O4 particles at room temperature as a function of frequency has been studied. The magnetic and dielectric properties of the samples show that they are suitable for electronic and biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the application of polyelectrolyte multilayer (PEM) coated metal slides in enhancing fluorescence signal. We observed around eight-fold enhancement in fluorescence for protein incubated on PEM coated on aluminium mirror surface with respect to that of functionalized bare glass slides. The fluorescence intensities were also compared with commercially available FAST (R) slides (Whatman) offering 3D immobilization of proteins and the results were found to be comparable. We also showed that PEM coated on low-cost and commonly available aluminium foils also results in comparable fluorescence enhancement as sputtered aluminium mirrors. Immunoassay was also performed, using model proteins, on aluminium mirror as well as on aluminium foil based devices to confirm the activity of proteins. This work demonstrated the potential of PEMs in the large-scale, roll-to-roll manufacturing of fluorescence enhancements substrates for developing disposable, low-cost devices for fluorescence based diagnostic methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and implementation of a reorientable scanning probe that is capable of two-axis force sensing and control in the 2-D scanning (X-Z) plane. The probe is comprised of three major components, namely a compliant manipulator, laser measurement system, and magnetic actuation system. Control of the position and orientation of the probe tip is realized by means of magnetic actuation combined with a novel structural design. The design of the manipulator's compliance and that of the optical path of the laser measurement system together enable achieving sensitivity to lateral (X) forces that is nearly identical to that of normal (Z) forces. The achieved sensitivity ratio, of about 0.6, is significantly higher than that of conventional scanning probe systems. The theoretical bases for the structural design and the sensitivity of the two-axis force sensing system are presented. Subsequently, fabrication of the manipulator is described and the result of experimental evaluation of the scanning probe's features is discussed. The scanning probe is used to access the vertical and re-entrant features on the two sides of a cylindrical micropipette, which are subsequently scanned by regulating the lateral force of tip-sample interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by n(O) -> sigma* (S-OH) orbital interactions, which force the -OH group to adopt a position trans to the S center dot center dot center dot O interaction, leading to an almost linear arrangement of the O center dot center dot center dot S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S center dot center dot center dot N or S center dot center dot center dot O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic understanding of the noncovalent interactions that influence the structures of the cis conformers and the equilibrium between the cis and the trans conformers, of the X-Pro tertiary amide motifs, is presented based on analyses of H-1-, C-13-NMR and FTIR absorption spectra of two sets of homologous peptides, X-Pro-Aib-OMe and X-Pro-NH-Me (where X is acetyl, propionyl, isobutyryl and pivaloyl), in solvents of varying polarities. First, this work shows that the cis conformers of any X-Pro tertiary amide motif, including Piv-Pro, are accessible in the new motifs X-Pro-Aib-OMe, in solution. These conformers are uniquely observable by FTIR spectroscopy at ambient temperatures and by NMR spectroscopy from temperatures as high as 273 K. This is made possible by the persistent presence of n(i-1i)* interactions at Aib, which also influence the disappearance of steric effects at these cis X-Pro rotamers. Second, contrary to conventional understanding, the energy contribution of steric effects to the cis/trans equilibrium at the X-Pro motifs is found to be nonvariant (0.54 +/- 0.02 kcal/mol) with increase in steric bulk on the X group. Third, the current studies provide direct evidence for the weak intramolecular interactions namely the n(i-1i)*, the N-Pro center dot center dot center dot Hi+1 (C(5)a), and the C-7 hydrogen bond that operate and influence the structures, stabilities, and dynamics between different conformational states of X-Pro tertiary amide motifs. NMR and IR spectral data suggest that the cis conformers of X-Pro motifs are ensembles of short-lived rotamers about the C-X-N-Pro bond. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 66-77, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The miniaturization of electronic and ionic devices with thermionic cathodes and thc improvement of their vacuum properties are questions of very great interest to the electronic engineer. However there have bcen no proposals so far to analyse the problem of miniaturization of such devices In a fundamental way. The present work suggests a choice of the geometrical shape of the cathode, the anode and the envelope of the device, that may help towards such a fundamcnlal approach.It is shown that a design, in which the cathode and the envelope of the tube are made of thm prismatic shape and the anode coincides with the cnvclope, offers a slriknrg advantage over the conventional cylindrical design, in respect of over-all size. The use of the prismatic shape will lead to considerable economy in msterials and may facilitate simpler prodoct~ont echn~ques. I n respect of the miin criteria of vacuum, namely the grade of vacuum, the internal volume occupied by residual gases, the evolution of gases in the internal space and the diffusion of gases from outside into the devicc, it is shown that the prismatic form is at least as good as, if not somewhat superior lo, the cylindrical form.In the actual construction of thin prismatic tubes, manv practical problems will arise, the most important being the mechanical strength and stablity of the structure. But the changeover from the conventional cylindrical to the new prirmaiic form, with its basic advantages, is a development that merits close attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of generating a realistic coherent phantom track by a group of ECAVs (Electronic Combat Aerial Vehicles) to deceive a radar network. The phantom track considered is the trajectory of a missile guided by proportional navigation. Sufficient conditions for the existence of feasible ECAV trajectories to generate the phantom track is presented. The line-of-sight guidance law is used to control the ECAVs for practical implementation. A performance index is developed to assess the performance of the ECAVS. Simulation results for single and multiple ECAVs generating the coherent phantom track are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphane, hydrogenated graphene, can be patterned into electronic devices by selectively removing hydrogen atoms. The most simple of such devices is the so-called nanoroad, analogous to the graphene nanoribbon, where confinement-and the opening of a gap-is obtained without the need for breaking the carbon bonds. In this work we address the electronic transport properties of such systems considering different hydrogen impurities within the conduction channel. We show, using a combination of density functional theory and non-equilibrium Green's functions, that hydrogen leads to significant changes in the transport properties and in some cases to current polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicene, a graphene analogue of silicon, has been generating immense interest due to its potential for applications in miniaturized devices. Unlike planar graphene, silicene prefers a buckled structure. Here we explore the possibility of stabilizing the planar form of silicene by Ni doping using first principles density functional theory based calculations. It is found that planar as well as buckled structure is stable for Ni-doped silicene, but the buckled sheet has slightly lower total energy. The planar silicene sheet has unstable phonon modes. A comparative study of the mechanical properties reveals that the in-plane stiffness of both the pristine and the doped planar silicene is higher compared to that of the buckled silicene. This suggests that planar silicene is mechanically more robust. Electronic structure calculations of the planar and buckled Ni-doped silicene show that the energy bands at the Dirac point transform from linear behavior to parabolic dispersion. Furthermore, we extend our study to Ge and Sn sheets that are also stable and the trends of comparable mechanical stability of the planar and buckled phases remain the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron oxide (B2O3) addition to pre-reacted K0.5Na0.5NbO3 (KNN) powders facilitated swift densification at relatively low sintering temperatures which was believed to be a key to minimize potassium and sodium loss. The base KNN powder was synthesized via solid-state reaction route. The different amounts (0.1-1 wt%) of B2O3 were-added, and ceramics were sintered at different temperatures and durations to optimize the amount of B2O3 needed to obtain KNN pellets with highest possible density and grain size. The 0.1 wt% B2O3-added KNN ceramics sintered at 1,100 A degrees C for 1 h exhibited higher density (97 %). Scanning electron microscopy studies confirmed an increase in average grain size with increasing B2O3 content at appropriate temperature of sintering and duration. The B2O3-added KNN ceramics exhibited improved dielectric and piezoelectric properties at room temperature. For instance, 0.1 wt% B2O3-added KNN ceramic exhibited d (33) value of 116 pC/N which is much higher than that of pure KNN ceramics. Interestingly, all the B2O3-added (0.1-1 wt%) KNN ceramics exhibited polarization-electric field (P vs. E) hysteresis loops at room temperature. The remnant polarization (P (r)) and coercive field (E (c)) values are dependent on the B2O3 content and crystallite size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structures of Nd1-xYxMnO3 (x=0-0.5) were studied using X-ray absorption near-edge structure (XANES) at the Mn L-3,L-2- and O K-edge along with valence-band photoemission spectroscopy (VB-PES). The systematic increase in white-line intensity of the Mn L-3,L-2-edge with doping, suggests a decrease in the occupancy of Mn 3d orbitals. The O K-edge XANES shows a depletion of unoccupied states above the Fermi energy. The changes in the O K-edge spectra due to doping reflects an increase in the Jahn-Teller distortion. The VB-PES shows broadening of the features associated with Mn 3d and O 2p hybridized states and the shift of these features to a slightly higher binding energy in agreement with our GGA + U calculations. The system shows a net shift of the occupied and unoccupied states away from the Fermi energy with doping. The shift in theoretical site-projected density of states of x=0.5 composition with respect to x=0 suggest a subtle change from a charge transfer to Mott-Hubbard type insulator. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the rectification properties from a single ZnS nanorod measured using the UHV-SPM technique. The rectification behavior is evidenced from the current-voltage characteristics measured on a single ZnS nanorod. We propose a tunneling mechanism where the direct tunneling mechanism is dominant at lower applied bias voltages followed by resonant tunneling through discrete energy levels of the nanorod. A further increase in the bias voltage changes the tunneling mechanism to the Fowler-Nordheim tunneling regime enabling rectification behavior. Realizing rectification from a single ZnS nanorod may provide a means of realizing a single nanorod based miniaturized device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

South Asian populations harbor a high degree of genetic diversity, due in part to demographic history. Two studies on genome-wide variation in Indian populations have shown that most Indian populations show varying degrees of admixture between ancestral north Indian and ancestral south Indian components. As a result of this structure, genetic variation in India appears to follow a geographic cline. Similarly, Indian populations seem to show detectable differences in diabetes and obesity prevalence between different geographic regions of the country. We tested the hypothesis that genetic variation at diabetes-and obesity-associated loci may be potentially related to different genetic ancestries. We genotyped 2977 individuals from 61 populations across India for 18 SNPs in genes implicated in T2D and obesity. We examined patterns of variation in allele frequency across different geographical gradients and considered state of origin and language affiliation. Our results show that most of the 18 SNPs show no significant correlation with latitude, the geographic cline reported in previous studies, or by language family. Exceptions include KCNQ1 with latitude and THADA and JAK1 with language, which suggests that genetic variation at previously ascertained diabetes-associated loci may only partly mirror geographic patterns of genome-wide diversity in Indian populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.