958 resultados para SSC RF cavity
Resumo:
In questa tesi verranno trattati sia il problema della creazione di un ambiente di simulazione a domini fisici misti per dispositivi RF-MEMS, che la definizione di un processo di fabbricazione ad-hoc per il packaging e l’integrazione degli stessi. Riguardo al primo argomento, sarà mostrato nel dettaglio lo sviluppo di una libreria di modelli MEMS all’interno dell’ambiente di simulazione per circuiti integrati Cadence c . L’approccio scelto per la definizione del comportamento elettromeccanico dei MEMS è basato sul concetto di modellazione compatta (compact modeling). Questo significa che il comportamento fisico di ogni componente elementare della libreria è descritto per mezzo di un insieme limitato di punti (nodi) di interconnessione verso il mondo esterno. La libreria comprende componenti elementari, come travi flessibili, piatti rigidi sospesi e punti di ancoraggio, la cui opportuna interconnessione porta alla realizzazione di interi dispositivi (come interruttori e capacità variabili) da simulare in Cadence c . Tutti i modelli MEMS sono implementati per mezzo del linguaggio VerilogA c di tipo HDL (Hardware Description Language) che è supportato dal simulatore circuitale Spectre c . Sia il linguaggio VerilogA c che il simulatore Spectre c sono disponibili in ambiente Cadence c . L’ambiente di simulazione multidominio (ovvero elettromeccanico) così ottenuto permette di interfacciare i dispositivi MEMS con le librerie di componenti CMOS standard e di conseguenza la simulazione di blocchi funzionali misti RF-MEMS/CMOS. Come esempio, un VCO (Voltage Controlled Oscillator) in cui l’LC-tank è realizzato in tecnologia MEMS mentre la parte attiva con transistor MOS di libreria sarà simulato in Spectre c . Inoltre, nelle pagine successive verrà mostrata una soluzione tecnologica per la fabbricazione di un substrato protettivo (package) da applicare a dispositivi RF-MEMS basata su vie di interconnessione elettrica attraverso un wafer di Silicio. La soluzione di packaging prescelta rende possibili alcune tecniche per l’integrazione ibrida delle parti RF-MEMS e CMOS (hybrid packaging). Verranno inoltre messe in luce questioni riguardanti gli effetti parassiti (accoppiamenti capacitivi ed induttivi) introdotti dal package che influenzano le prestazioni RF dei dispositivi MEMS incapsulati. Nel dettaglio, tutti i gradi di libertà del processo tecnologico per l’ottenimento del package saranno ottimizzati per mezzo di un simulatore elettromagnetico (Ansoft HFSSTM) al fine di ridurre gli effetti parassiti introdotti dal substrato protettivo. Inoltre, risultati sperimentali raccolti da misure di strutture di test incapsulate verranno mostrati per validare, da un lato, il simulatore Ansoft HFSSTM e per dimostrate, dall’altro, la fattibilit`a della soluzione di packaging proposta. Aldilà dell’apparente debole legame tra i due argomenti sopra menzionati è possibile identificare un unico obiettivo. Da un lato questo è da ricercarsi nello sviluppo di un ambiente di simulazione unificato all’interno del quale il comportamento elettromeccanico dei dispositivi RF-MEMS possa essere studiato ed analizzato. All’interno di tale ambiente, l’influenza del package sul comportamento elettromagnetico degli RF-MEMS può essere tenuta in conto per mezzo di modelli a parametri concentrati (lumped elements) estratti da misure sperimentali e simulazioni agli Elementi Finiti (FEM) della parte di package. Infine, la possibilità offerta dall’ambiente Cadence c relativamente alla simulazione di dipositivi RF-MEMS interfacciati alla parte CMOS rende possibile l’analisi di blocchi funzionali ibridi RF-MEMS/CMOS completi.
Resumo:
Especialidad: Sistemas Electrónicos
Resumo:
Introduzione generale ai sistemi RFID: cenni storici, classificazione, funzionamento e applicazioni. Preso in esame un sistema RFID reale per eseguire misure sulla distanza di lettura di diversi tipi di tag con diversi reader. Tali misure sono servite per capire le differenti caratteristiche fra i vari tipi di tag, con particolare interessa per il funzionamento in presenza della "finestra", supporto metallico in cui viene installato il reader.
Resumo:
Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn
Resumo:
Tumours in the oral cavity and oropharynx differ in presentation and prognosis and the detection of spread of tumour from one subsite to another is essential for the T-staging. This article reviews the anatomy and describes the pattern of spread of different cancers arising in the oral cavity and oropharynx; the imaging findings on computerized tomography and magnetic resonance imaging are also described. Brief mention is made on the role of newer imaging modalities such as [(18)F]fluorodeoxyglucose-positron emission tomography/computed tomography, perfusion studies and diffusion-weighted magnetic resonance imaging.
Resumo:
Taking intraoperative frozen sections (FS) is a widely used procedure in oncologic surgery. However so far no evidence of an association of FS analysis and premalignant changes in the surgical margin exists. Therefore, the aim of this study was to evaluate the impact of FS on different categories of the final margins of squamous cell carcinoma (SCC) of the oral cavity and lips.
Resumo:
Recent claims of blood vessels extracted from dinosaur fossils challenge classical views of soft-tissue preservation. Alternatively, these structures may represent postdepositional,diagenetic biofilms that grew on vascular cavity surfaces within the fossil. Similar red, hollow, tube-shaped structures were recovered from well-preserved and poorly-preserved (abraded, desiccated, exposed) Upper Cretaceous dinosaur fossils in this study. Integration of light microscopy, scanning electron microscopy, and energy dispersive x-ray spectroscopy was used to compare these vessel structures to the fossils from which they are derived. Vessel structures are typically 100-400 μm long, 0.5-1.5 μm thick, 10-40 μm in diameter and take on a wide range of straight, curved, andbranching morphologies. Interior surfaces vary from smooth to globular and typically contain spheres, rods, and fibrous structures (< 2 μm in diameter) incorporated into the surface. Exterior surfaces exhibit 2-μm-tall converging ridges, spaced 1-3 μm apart, that are sub-parallel to the long axis of the vessel structure. Fossil vascular cavities are typically coated with a smooth or grainy orange layer that shows a wide range of textures including smooth, globular, rough, ropy, and combinations thereof. Coatings tend to overlay secondary mineral crystals and framboids, confirming they are not primary structures of the fossil. For some cavity coatings, the surface that had been in contact with the bone exhibits a ridged texture, similar to that of vessel structures, having formed as a mold of the intravascular bone surface. Thus, vessel structures are interpreted as intact cavity coatings isolated after the fossil is demineralized. The presence of framboids and structures consistent in size and shape with bacteria cells, the abundance of iron in cavity coatings, and the growth of biofilms directly from the fossil that resemble respective cavity coatings support the hypothesis that vessel structures result from ironconsuming bacteria that form biofilms on the intravascular bone surfaces of fossil dinosaur bone. This also accounts for microstructures resembling osteocytes as some fossil lacunae are filled with the same iron oxide that comprises vessel structures andcoatings. Results of this study show that systematic, high-resolution SEM analyses of vertebrate fossils can provide improved insight on microtaphonomic processes, including the role of bacteria in diagenesis. These results conflict with earlier claims of dinosaurblood vessels and osteocytes.
Resumo:
Background To determine the outcome and patterns of failure in oral cavity cancer (OCC) patients after postoperative intensity modulated radiotherapy (IMRT) with concomitant systemic therapy. Methods All patients with locally advanced (AJCC stage III/IV) or high-risk OCC (AJCC stage II) who underwent postoperative IMRT at our institution between December 2006 and July 2010 were retrospectively analyzed. The primary endpoint was locoregional recurrence-free survival (LRRFS). Secondary endpoints included distant metastasis-free survival (DMFS), overall survival (OS), acute and late toxicities. Results Overall 53 patients were analyzed. Twenty-three patients (43%) underwent concomitant chemotherapy with cisplatin, two patients with carboplatin (4%) and four patients were treated with the monoclonal antibody cetuximab (8%). At a median follow-up of 2.3 (range, 1.1–4.6) years the 3-year LRRFS, DMFS and OS estimates were 79%, 90%, and 73% respectively. Twelve patients experienced a locoregional recurrence. Eight patients, 5 of which had both a flap reconstruction and extracapsular extension (ECE), showed an unusual multifocal pattern of recurrence. Ten locoregional recurrences occurred marginally or outside of the high-risk target volumes. Acute toxicity grades of 2 (27%) and 3 (66%) and late toxicity grades of 2 (34%) and 3 (11%) were observed. Conclusion LRRFS after postoperative IMRT is satisfying and toxicity is acceptable. The majority of locoregional recurrences occurred marginally or outside of the high-risk target volumes. Improvement of high-risk target volume definition especially in patients with flap reconstruction and ECE might transfer into better locoregional control.
Resumo:
In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r1/r potential.
Resumo:
BACKGROUND: Supraomohyoid neck dissection (SOHND) is currently performed in patients with carcinoma of the oral cavity with clinically negative neck. Most investigators consider SOHND as a staging procedure. METHODS: Records of 100 patients with cancer of the oral cavity and clinically negative neck undergoing SOHND were reviewed. The rate and significance of occult metastases are evaluated, the neck recurrences are analyzed and the indication of adjuvant radiation of pN+ necks is discussed. RESULTS: In 34 of 1814 of analyzed lymph nodes, metastatic disease was detected as follows: 30 macrometastases and 4 micrometastases. In 13 of 34 metastases (38%), extracapsular spread was observed. Twenty of 100 patients (20%) had to be upstaged. In 9 of 87 (10%) patients without local recurrence and with a minimal follow-up of 24 months, 5 ipsilateral (4 within the dissection field) and 5 contralateral neck recurrences were observed. Regional recurrence developed in 4% and 35% of patients with pN0 and pN+ necks, respectively. CONCLUSIONS: In 20% of patients with oral cavity tumors and pN0 neck, occult metastases were disclosed. Neck recurrences developed significantly more often in patients with pN+ than in those with pN0 necks. To evaluate the exact indication for an adjuvant treatment of patients with cN0/pN+ necks, prospective studies should be performed.