826 resultados para Representation of time
Resumo:
For each quasi-metric space X we consider the convex lattice SLip(1)(X) of all semi-Lipschitz functions on X with semi-Lipschitz constant not greater than 1. If X and Y are two complete quasi-metric spaces, we prove that every convex lattice isomorphism T from SLip(1)(Y) onto SLip(1)(X) can be written in the form Tf = c . (f o tau) + phi, where tau is an isometry, c > 0 and phi is an element of SLip(1)(X). As a consequence, we obtain that two complete quasi-metric spaces are almost isometric if, and only if, there exists an almost-unital convex lattice isomorphism between SLip(1)(X) and SLip(1) (Y).
Resumo:
The main objective of blasting is to produce optimum fragmentation for downstream processing. Fragmentation is usually considered optimum when the average fragment size is minimum and the fragmentation distribution as uniform as possible. One of the parameters affecting blasting fragmentation is believed to be time delay between holes of the same row. Although one can find a significant number of studies in the literature, which examine the relationship between time delay and fragmentation, their results have been often controversial. The purpose of this work is to increase the level of understanding of how time delay between holes of the same row affects fragmentation. Two series of experiments were conducted for this purpose. The first series involved tests on small scale grout and granite blocks to determine the moment of burden detachment. The instrumentation used for these experiments consisted mainly of strain gauges and piezoelectric sensors. Some experiments were also recorded with a high speed camera. It was concluded that the time of detachment for this specific setup is between 300 and 600 μs. The second series of experiments involved blasting of a 2 meter high granite bench and its purpose was the determination of the hole-to-hole delay that provides optimum fragmentation. The fragmentation results were assessed with image analysis software. Moreover, vibration was measured close to the blast and the experiments were recorded with high speed cameras. The results suggest that fragmentation was optimum when delays between 4 and 6 ms were used for this specific setup. Also, it was found that the moment at which gases first appear to be venting from the face was consistently around 6 ms after detonation.
Resumo:
Using the concept of time travel as a contextual and narrative tool, the author explores themes of love, loss and growth after trauma. Reflections relate primarily to the experience of conducting the qualitative research method of autoethnography. Opening with consideration of existing work (Yoga and Loss: An Autoethnographical Exploration of Grief, Mind, and Body), discussion moves on to academic thought on mental time travel, and personal transformation, culminating in the construction of a new memory combining past, present, and future.
Resumo:
This paper describes three metaphors for time drawn from contemporary and historical literature on knowledge organization systems (KOS). It then links these metaphors to the evaluation of knowledge organization by describing the dominant paradigm in KOS evaluation to be judging whether a KOS is correct. We conclude by saying a foundational view of evaluating and theorizing about KOS must account for change and time in order for us to take a long view of improving knowledge organization and our understanding of KOS.
Resumo:
Liquid chromatography coupled with mass spectrometry is one of the most powerful tools in the toxicologist’s arsenal to detect a wide variety of compounds from many different matrices. However, the huge number of potentially abused substances and new substances especially designed as intoxicants poses a problem in a forensic toxicology setting. Most methods are targeted and designed to cover a very specific drug or group of drugs while many other substances remain undetected. High resolution mass spectrometry, more specifically time-of-flight mass spectrometry, represents an extremely powerful tool in analysing a multitude of compounds not only simultaneously but also retroactively. The data obtained through the time-of-flight instrument contains all compounds made available from sample extraction and chromatography, which can be processed at a later time with an improved library to detect previously unrecognised compounds without having to analyse the respective sample again. The aim of this project was to determine the utility and limitations of time-of-flight mass spectrometry as a general and easily expandable screening method. The resolution of time-of-flight mass spectrometry allows for the separation of compounds with the same nominal mass but distinct exact masses without the need to separate them chromatographically. To simulate the wide variety of potentially encountered drugs in such a general screening method, seven drugs (morphine, cocaine, zolpidem, diazepam, amphetamine, MDEA and THC) were chosen to represent this variety in terms of mass, properties and functional groups. Consequently, several liquid-liquid and solid phase extractions were applied to urine samples to determine the most general suitable and unspecific extraction. Chromatography was optimised by investigating the parameters pH, concentration, organic solvent and gradient of the mobile phase to improve data obtained by the time-of-flight instrument. The resulting method was validated as a qualitative confirmation/identification method. Data processing was automated using the software TargetAnalysis, which provides excellent analyte recognition according to retention time, exact mass and isotope pattern. The recognition of isotope patterns allows excellent recognition of analytes even in interference rich mass spectra and proved to be a good positive indicator. Finally, the validated method was applied to samples received from the A& E Department of Glasgow Royal Infirmary in suspected drug abuse cases and samples received from the Scottish Prison Service, which we received from their own prevalence study targeting drugs of abuse in the prison population. The obtained data was processed with a library established in the course of this work.
Resumo:
Este trabalho se propõe a analisar duas obras do escritor português António Lobo Antunes, tendo em vista algumas instâncias narrativas, que, a nosso ver, sobressaem na obra do autor. As obras são Ontem não te vi em Babilónia, romance publicado em 2006, e O arquipélago da insónia, de 2008. Os dois romances compõem o ciclo de produção mais recente do autor, no qual as experimentações formais e estéticas são mais intensas do que nos romances anteriores. Além disso, as obras apresentam convergências temáticas já explicitadas por uma leitura atenta de seus títulos. Ontem não te vi é a representação de um tempo de espera, um tempo de frustração; Babilónia é Babel, símbolo maior da incomunicabilidade para o Ocidente. Já arquipélago é um conjunto de ilhas, reunião marcada pelo isolamento e pela incomunicabilidade; insónia é, igualmente, uma espera frustrada por algo que não vem, no caso, o sono, que nos romances será metáfora para a morte. O trabalho privilegiará, portanto, a análise do espaço, a partir do símbolo da casa; do tempo, insone e de morte; e do texto, que se apresenta, essencialmente, por uma enxurrada discursiva. Assim, pretende-se entrar no universo antuniano e, como parece ser o desejo do autor, desvendar a nós mesmos e a nosso tempo
Resumo:
We focus on the representation of time in Muñiz’s historical novels. Concretely, we stress the attitude of the feminine characters towards time and history. Muñiz’s female personages continuously transgress temporal borders and move freely between different historical periods. We relate Muñiz’s particular vision on time and on the separation lines between historical periods to her situation as an exile. The author is continuously crossing borders between the past of her homeland and the present of her adoptive country. We argument Muñiz is recreating this “borderfree” attitude towards time in the female characters of her historical novels.
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
Thèse réalisée en cotutelle avec l'Université Paris-Sorbonne (Paris IV), sous la direction de M. Michel Delon.
Resumo:
Tout au long de la vie, le cerveau développe des représentations de son environnement permettant à l’individu d’en tirer meilleur profit. Comment ces représentations se développent-elles pendant la quête de récompenses demeure un mystère. Il est raisonnable de penser que le cortex est le siège de ces représentations et que les ganglions de la base jouent un rôle important dans la maximisation des récompenses. En particulier, les neurones dopaminergiques semblent coder un signal d’erreur de prédiction de récompense. Cette thèse étudie le problème en construisant, à l’aide de l’apprentissage machine, un modèle informatique intégrant de nombreuses évidences neurologiques. Après une introduction au cadre mathématique et à quelques algorithmes de l’apprentissage machine, un survol de l’apprentissage en psychologie et en neuroscience et une revue des modèles de l’apprentissage dans les ganglions de la base, la thèse comporte trois articles. Le premier montre qu’il est possible d’apprendre à maximiser ses récompenses tout en développant de meilleures représentations des entrées. Le second article porte sur l'important problème toujours non résolu de la représentation du temps. Il démontre qu’une représentation du temps peut être acquise automatiquement dans un réseau de neurones artificiels faisant office de mémoire de travail. La représentation développée par le modèle ressemble beaucoup à l’activité de neurones corticaux dans des tâches similaires. De plus, le modèle montre que l’utilisation du signal d’erreur de récompense peut accélérer la construction de ces représentations temporelles. Finalement, il montre qu’une telle représentation acquise automatiquement dans le cortex peut fournir l’information nécessaire aux ganglions de la base pour expliquer le signal dopaminergique. Enfin, le troisième article évalue le pouvoir explicatif et prédictif du modèle sur différentes situations comme la présence ou l’absence d’un stimulus (conditionnement classique ou de trace) pendant l’attente de la récompense. En plus de faire des prédictions très intéressantes en lien avec la littérature sur les intervalles de temps, l’article révèle certaines lacunes du modèle qui devront être améliorées. Bref, cette thèse étend les modèles actuels de l’apprentissage des ganglions de la base et du système dopaminergique au développement concurrent de représentations temporelles dans le cortex et aux interactions de ces deux structures.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An intelligent agent, operating in an external world which cannot be fully described in its internal world model, must be able to monitor the success of a previously generated plan and to respond to any errors which may have occurred. The process of error analysis requires the ability to reason in an expert fashion about time and about processes occurring in the world. Reasoning about time is needed to deal with causality. Reasoning about processes is needed since the direct effects of a plan action can be completely specified when the plan is generated, but the indirect effects cannot. For example, the action `open tap' leads with certainty to `tap open', whereas whether there will be a fluid flow and how long it might last is more difficult to predict. The majority of existing planning systems cannot handle these kinds of reasoning, thus limiting their usefulness. This thesis argues that both kinds of reasoning require a complex internal representation of the world. The use of Qualitative Process Theory and an interval-based representation of time are proposed as a representation scheme for such a world model. The planning system which was constructed has been tested on a set of realistic planning scenarios. It is shown that even simple planning problems, such as making a cup of coffee, require extensive reasoning if they are to be carried out successfully. The final Chapter concludes that the planning system described does allow the correct solution of planning problems involving complex side effects, which planners up to now have been unable to solve.
Resumo:
While environmental literary criticism has traditionally focused its attention on the textual representation of specific places, recent ecocritical scholarship has expanded this focus to consider the treatment of time in environmental literature and culture. As environmental scholars, activists, scientists, and artists have noted, one of the major difficulties in grasping the reality and implications of climate change is a limited temporal imagination. In other words, the ability to comprehend and integrate different shapes, scales, and speeds of history is a precondition for ecologically sustainable and socially equitable responses to climate change.
My project examines the role that literary works might play in helping to create such an expanded sense of history. As I show how American writers after 1945 have treated the representation of time and history in relation to environmental questions, I distinguish between two textual subfields of environmental temporality. The first, which I argue is characteristic of mainstream environmentalism, is disjunctive, with abrupt environmental changes separating the past and the present. This subfield contains many canonical works of postwar American environmental writing, including Aldo Leopold’s A Sand County Almanac, Edward Abbey’s Desert Solitaire, Annie Dillard’s Pilgrim at Tinker Creek, and Kim Stanley Robinson’s Science in the Capital trilogy. From treatises on the ancient ecological histories of particular sites to meditations on the speed of climate change, these works evince a preoccupation with environmental time that has not been acknowledged within the spatially oriented field of environmental criticism. However, by positing radical breaks between environmental pasts and environmental futures, they ultimately enervate the political charge of history and elide the human dimensions of environmental change, in terms both of environmental injustice and of possible social responses.
By contrast, the second subfield, which I argue is characteristic of environmental justice, is continuous, showing how historical patterns persist even across social and ecological transformations. I trace this version of environmental thought through a multicultural corpus of novels consisting of Ralph Ellison’s Invisible Man, Ishmael Reed’s Mumbo Jumbo, Helena María Viramontes’ Under the Feet of Jesus, Linda Hogan’s Solar Storms, and Octavia Butler’s Parable of the Sower and Parable of the Talents. Some of these novels do not document specific instances of environmental degradation or environmental injustice and, as a result, have not been critically interpreted as relevant for environmental analysis; others are more explicit in their discussion of environmental issues and are recognized as part of the canon of American environmental literature. However, I demonstrate that, across all of these texts, counterhegemonic understandings of history inform resistance to environmental degradation and exploitation. These texts show that environmental problems cannot be fully understood, nor environmental futures addressed, without recognizing the way that social histories of inequality and environmental histories of extraction continue to structure politics and ecology in the present.
Ultimately, then, the project offers three conclusions. First, it suggests that the second version of environmental temporality holds more value than the first for environmental cultural studies, in that it more compellingly and accurately represents the social implications of environmental issues. Second, it shows that “environmental literature” is most usefully understood not as the literature that explicitly treats environmental issues, but rather as the literature that helps to produce the sense of time that contemporary environmental crises require. Third, it shows how literary works can not only illuminate the relationship between American ideas about nature and social justice, but also operate as a specifically literary form of eco-political activism.
Resumo:
This paper presents a discrete formalism for temporal reasoning about actions and change, which enjoys an explicit representation of time and action/event occurrences. The formalism allows the expression of truth values for given fluents over various times including nondecomposable points/moments and decomposable intervals. Two major problems which beset most existing interval-based theories of action and change, i.e., the so-called dividing instant problem and the intermingling problem, are absent from this new formalism. The dividing instant problem is overcome by excluding the concepts of ending points of intervals, and the intermingling problem is bypassed by means of characterising the fundamental time structure as a well-ordered discrete set of non-decomposable times (points and moments), from which decomposable intervals are constructed. A comprehensive characterisation about the relationship between the negation of fluents and the negation of involved sentences is formally provided. The formalism provides a flexible expression of temporal relationships between effects and their causal events, including delayed effects of events which remains a problematic question in most existing theories about action and change.
Resumo:
This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.