996 resultados para Random Stress
Resumo:
A comparison of cytogenetical data on acute lymphoblastic leukaemia studied at four large European centres has revealed a non-random dicentric chromosome abnormality: dic(9;20) (p1?3;q11) in 10 patients, nine of whom were children. All had early precursor-B lineage ALL, and eight children had a non-standard risk clinical presentation. The origin of the dicentric chromosome was demonstrated using a range of chromosome banding techniques. This was confirmed by FISH using paints and centromeric probes for chromosomes 9 and 20, together with a number of cosmid probes. The follow-up time of these patients is presently too short and the number of patients too few to determine the prognostic significant of this chromosome abnormality.
Resumo:
Summary
Resumo:
OBJECTIVE: It is known that exogenous lactate given as an i.v. energy infusion is able to counteract a neuroglycopenic state that developed during psychosocial stress. It is unknown, however, whether the brain under stressful conditions can induce a rise in plasma lactate to satisfy its increased needs during stress. Since lactate is i) an alternative cerebral energy substrate to glucose and ii) its plasmatic concentration is influenced by the sympathetic nervous system, the present study aimed at investigating whether plasma lactate concentrations increase with psychosocial stress in humans. METHODS: 30 healthy young men participated in two sessions (stress induced by the Trier Social Stress Test and a non-stress control session). Blood samples were frequently taken to assess plasma lactate concentrations and stress hormone profiles. RESULTS: Plasma lactate increased 47% during psychosocial stress (from 0.9 ± 0.05 to 1.4 ± 0.1 mmol/l; interaction time × stress intervention: F = 19.7, p < 0.001). This increase in lactate concentrations during stress was associated with an increase in epinephrine (R(2) = 0.221, p = 0.02) and ACTH concentrations (R(2) = 0.460, p < 0.001). CONCLUSION: Plasma lactate concentrations increase during acute psychosocial stress in humans. This finding suggests the existence of a demand mechanism that functions to allocate an additional source of energy from the body towards the brain, which we refer to as 'cerebral lactate demand'.
Resumo:
We present a numerical study of classical particles diffusing on a solid surface. The particles motion is modeled by an underdamped Langevin equation with ordinary thermal noise. The particle-surface interaction is described by a periodic or a random two-dimensional potential. The model leads to a rich variety of different transport regimes, some of which correspond to anomalous diffusion such as has recently been observed in experiments and Monte Carlo simulations. We show that this anomalous behavior is controlled by the friction coefficient and stress that it emerges naturally in a system described by ordinary canonical Maxwell-Boltzmann statistics.
Resumo:
Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.
Resumo:
PURPOSE: The current study tested the applicability of Jessor's problem behavior theory (PBT) in national probability samples from Georgia and Switzerland. Comparisons focused on (1) the applicability of the problem behavior syndrome (PBS) in both developmental contexts, and (2) on the applicability of employing a set of theory-driven risk and protective factors in the prediction of problem behaviors. METHODS: School-based questionnaire data were collected from n = 18,239 adolescents in Georgia (n = 9499) and Switzerland (n = 8740) following the same protocol. Participants rated five measures of problem behaviors (alcohol and drug use, problems because of alcohol and drug use, and deviance), three risk factors (future uncertainty, depression, and stress), and three protective factors (family, peer, and school attachment). Final study samples included n = 9043 Georgian youth (mean age = 15.57; 58.8% females) and n = 8348 Swiss youth (mean age = 17.95; 48.5% females). Data analyses were completed using structural equation modeling, path analyses, and post hoc z-tests for comparisons of regression coefficients. RESULTS: Findings indicated that the PBS replicated in both samples, and that theory-driven risk and protective factors accounted for 13% and 10% in Georgian and Swiss samples, respectively in the PBS, net the effects by demographic variables. Follow-up z-tests provided evidence of some differences in the magnitude, but not direction, in five of six individual paths by country. CONCLUSION: PBT and the PBS find empirical support in these Eurasian and Western European samples; thus, Jessor's theory holds value and promise in understanding the etiology of adolescent problem behaviors outside of the United States.
Resumo:
We present a numerical and partially analytical study of classical particles obeying a Langevin equation that describes diffusion on a surface modeled by a two-dimensional potential. The potential may be either periodic or random. Depending on the potential and the damping, we observe superdiffusion, large-step diffusion, diffusion, and subdiffusion. Superdiffusive behavior is associated with low damping and is in most cases transient, albeit often long. Subdiffusive behavior is associated with highly damped particles in random potentials. In some cases subdiffusive behavior persists over our entire simulation and may be characterized as metastable. In any case, we stress that this rich variety of behaviors emerges naturally from an ordinary Langevin equation for a system described by ordinary canonical Maxwell-Boltzmann statistics.
Resumo:
Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors.
Resumo:
We study the exact ground state of the two-dimensional random-field Ising model as a function of both the external applied field B and the standard deviation ¿ of the Gaussian random-field distribution. The equilibrium evolution of the magnetization consists in a sequence of discrete jumps. These are very similar to the avalanche behavior found in the out-of-equilibrium version of the same model with local relaxation dynamics. We compare the statistical distributions of magnetization jumps and find that both exhibit power-law behavior for the same value of ¿. The corresponding exponents are compared.
Resumo:
A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical regimes are found and explained. Effective subdiffusive exponents are obtained and commented on.
Resumo:
There has been a recent revolution in the ability to manipulate micrometer-sized objects on surfaces patterned by traps or obstacles of controllable configurations and shapes. One application of this technology is to separate particles driven across such a surface by an external force according to some particle characteristic such as size or index of refraction. The surface features cause the trajectories of particles driven across the surface to deviate from the direction of the force by an amount that depends on the particular characteristic, thus leading to sorting. While models of this behavior have provided a good understanding of these observations, the solutions have so far been primarily numerical. In this paper we provide analytic predictions for the dependence of the angle between the direction of motion and the external force on a number of model parameters for periodic as well as random surfaces. We test these predictions against exact numerical simulations.
Resumo:
The effects of flow induced by a random acceleration field (g-jitter) are considered in two related situations that are of interest for microgravity fluid experiments: the random motion of isolated buoyant particles, and diffusion driven coarsening of a solid-liquid mixture. We start by analyzing in detail actual accelerometer data gathered during a recent microgravity mission, and obtain the values of the parameters defining a previously introduced stochastic model of this acceleration field. The diffusive motion of a single solid particle suspended in an incompressible fluid that is subjected to such random accelerations is considered, and mean squared velocities and effective diffusion coefficients are explicitly given. We next study the flow induced by an ensemble of such particles, and show the existence of a hydrodynamically induced attraction between pairs of particles at distances large compared with their radii, and repulsion at short distances. Finally, a mean field analysis is used to estimate the effect of g-jitter on diffusion controlled coarsening of a solid-liquid mixture. Corrections to classical coarsening rates due to the induced fluid motion are calculated, and estimates are given for coarsening of Sn-rich particles in a Sn-Pb eutectic fluid, an experiment to be conducted in microgravity in the near future.
Resumo:
Chemical pollution is known to affect microbial community composition but it is poorly understood how toxic compounds influence physiology of single cells that may lay at the basis of loss of reproductive fitness. Here we analyze physiological disturbances of a variety of chemical pollutants at single cell level using the bacterium Pseudomonas fluorescens in an oligotrophic growth assay. As a proxy for physiological disturbance we measured changes in geometric mean ethidium bromide (EB) fluorescence intensities in subpopulations of live and dividing cells exposed or not exposed to different dosages of tetradecane, 4-chlorophenol, 2-chlorobiphenyl, naphthalene, benzene, mercury chloride, or water-dissolved oil fractions. Because ethidium bromide efflux is an energy-dependent process any disturbance in cellular energy generation is visible as an increased cytoplasmic fluorescence. Interestingly, all pollutants even at the lowest dosage of 1 nmol/mL culture produced significantly increased ethidium bromide fluorescence compared to nonexposed controls. Ethidium bromide fluorescence intensities increased upon pollutant exposure dosage up to a saturation level, and were weakly (r(2) = 0.3905) inversely correlated to the proportion of live cells at that time point in culture. Temporal increase in EB fluorescence of growing cells is indicative for toxic but reversible effects. Cells displaying high continued EB fluorescence levels experience constant and permanent damage, and no longer contribute to population growth. The procedure developed here using bacterial ethidium bromide efflux pump activity may be a useful complement to screen sublethal toxicity effects of chemicals.