From subdiffusion to superdiffusion of particles on solid surfaces


Autoria(s): Lacasta Palacio, Ana María; Sancho, José M.; Romero, A. H.; Sokolov, Igor M., 1958-; Lindenberg, Katja
Contribuinte(s)

Universitat de Barcelona

Data(s)

26/07/2011

Resumo

We present a numerical and partially analytical study of classical particles obeying a Langevin equation that describes diffusion on a surface modeled by a two-dimensional potential. The potential may be either periodic or random. Depending on the potential and the damping, we observe superdiffusion, large-step diffusion, diffusion, and subdiffusion. Superdiffusive behavior is associated with low damping and is in most cases transient, albeit often long. Subdiffusive behavior is associated with highly damped particles in random potentials. In some cases subdiffusive behavior persists over our entire simulation and may be characterized as metastable. In any case, we stress that this rich variety of behaviors emerges naturally from an ordinary Langevin equation for a system described by ordinary canonical Maxwell-Boltzmann statistics.

Identificador

http://hdl.handle.net/2445/18719

Idioma(s)

eng

Publicador

The American Physical Society

Direitos

(c) The American Physical Society, 2004

Palavras-Chave #Física estadística #Termodinàmica #Sistemes dinàmics diferenciables #Transformacions de fase (Física estadística) #Pel·lícules fines #Statistical physics #Thermodynamics #Differentiable dynamical systems #Phase transformations (Statistical physics) #Thin films
Tipo

info:eu-repo/semantics/article