844 resultados para RANDOM-CLUSTER MODEL
Resumo:
O objetivo deste estudo é propor a implementação de um modelo estatístico para cálculo da volatilidade, não difundido na literatura brasileira, o modelo de escala local (LSM), apresentando suas vantagens e desvantagens em relação aos modelos habitualmente utilizados para mensuração de risco. Para estimação dos parâmetros serão usadas as cotações diárias do Ibovespa, no período de janeiro de 2009 a dezembro de 2014, e para a aferição da acurácia empírica dos modelos serão realizados testes fora da amostra, comparando os VaR obtidos para o período de janeiro a dezembro de 2014. Foram introduzidas variáveis explicativas na tentativa de aprimorar os modelos e optou-se pelo correspondente americano do Ibovespa, o índice Dow Jones, por ter apresentado propriedades como: alta correlação, causalidade no sentido de Granger, e razão de log-verossimilhança significativa. Uma das inovações do modelo de escala local é não utilizar diretamente a variância, mas sim a sua recíproca, chamada de “precisão” da série, que segue uma espécie de passeio aleatório multiplicativo. O LSM captou todos os fatos estilizados das séries financeiras, e os resultados foram favoráveis a sua utilização, logo, o modelo torna-se uma alternativa de especificação eficiente e parcimoniosa para estimar e prever volatilidade, na medida em que possui apenas um parâmetro a ser estimado, o que representa uma mudança de paradigma em relação aos modelos de heterocedasticidade condicional.
Resumo:
The study aims to answer the following question: what are the different profiles of infant mortality, according to demographic, socioeconomic, infrastructure and health care, for the micro-regions at the Northeast of Brazil? Thus, the main objective is to analyze the profiles or typologies associated mortality levels sociodemographic conditions of the micro-regions, in the year 2010. To this end, the databases of birth and death certificates of SIM and SINASC (DATASUS/MS), were taken from the 2010 population Census microdata and from SIDRA/IBGE. As a methodology, a weighted multiple linear regression model was used in the analysis in order to find the most significant variables in the explanation child mortality for the year 2010. Also a cluster analysis was performed, seeking evidence, initially, of homogeneous groups of micro-regions, from of the significant variables. The logit of the infant mortality rate was used as dependent variable, while variables such as demographic, socioeconomic, infrastructure and health care in the micro-regions were taken as the independent variables of the model. The Bayesian estimation technique was applied to the database of births and deaths, due to the inconvenient fact of underreporting and random fluctuations of small quantities in small areas. The techniques of Spatial Statistics were used to determine the spatial behavior of the distribution of rates from thematic maps. In conclusion, we used the method GoM (Grade of Membership), to find typologies of mortality, associated with the selected variables by micro-regions, in order to respond the main question of the study. The results points out to the formation of three profiles: Profile 1, high infant mortality and unfavorable social conditions; Profile 2, low infant mortality, with a median social conditions of life; and Profile 3, median and high infant mortality social conditions. With this classification, it was found that, out of 188 micro-regions, 20 (10%) fits the extreme profile 1, 59 (31.4%) was characterized in the extreme profile 2, 34 (18.1%) was characterized in the extreme profile 3 and only 9 (4.8%) was classified as amorphous profile. The other micro-regions framed up in the profiles mixed. Such profiles suggest the need for different interventions in terms of public policies aimed to reducing child mortality in the region
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A total of 15,901 scrotal circumference (SC) records from 5300 Nelore bulls, ranging from 229 to 560 days of age, were used with the objective of estimating (co)variance functions for SC, using random regression models. Models included the fixed effects of contemporary group and age of dam at calving as covariable (linear and quadratic effects). To model the population mean trend, a third order Legendre polynomial on animal age was utilized. The direct additive genetic and animal permanent environmental random effects were modeled by Legendre polynomials on animal age, with orders of fit ranging from 1 to 5. Residual variances were modeled considering 1 (homogeneity of variance) or 4 age classes. Results obtained with the random regression models were compared to multi-trait analysis. (Co)variance estimates using multi-trait and random regression models were similar. The model considering a third- and fifth-order Legendre polynomials for additive genetic and animal permanent environmental effects, respectively, was the most adequate to model changes in variance of SC with age. Heritability estimates for SC ranged from 0.24 (229 days of age) to 0.47 (300 days of age), remained almost constant until 500 days of age (0.52), decreasing thereafter (0.44). In general, the genetic correlations between measures of scrotal circumference obtained from 229 to 560 days of age decreased with increasing distance between ages. For genetic evaluation scrotal circumference could be measured between 400 and 500 days of age. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this thesis we study some problems related to petroleum reservoirs using methods and concepts of Statistical Physics. The thesis could be divided percolation problem in random multifractal support motivated by its potential application in modelling oil reservoirs. We develped an heterogeneous and anisotropic grid that followin two parts. The first one introduce a study of the percolations a random multifractal distribution of its sites. After, we determine the percolation threshold for this grid, the fractal dimension of the percolating cluster and the critical exponents ß and v. In the second part, we propose an alternative systematic of modelling and simulating oil reservoirs. We introduce a statistical model based in a stochastic formulation do Darcy Law. In this model, the distribution of permeabilities is localy equivalent to the basic model of bond percolation
Resumo:
Sixty-three Paracoccidioides brasiliensis isolates obtained from three nine-banded armadillos (Dasypus novem-cinctus), one Amazonian armadillo's and 19 clinical isolates were compared by random amplified polymorphic DNA analysis with the primer OPG-19. The isolates were divided into three major clusters, I, II and III. Coincidences between human and armadillo isolates were observed in clusters I and II. Cluster III consisted only of armadillos' isolates. The results suggested that (I) humans may acquire P. brasiliensis infection by contact with armadillo's environment, (II) there may be P. brasiliensis genotypes peculiar to the animal, and (III) individual armadillos may be infected with P brasiliensis cells with different genotypes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study we explored the stochastic population dynamics of three exotic blowfly species, Chrysomya albiceps, Chrysomya megacephala and Chrysomya putoria, and two native species, Cochliomyia macellaria and Lucilia eximia, by combining a density-dependent growth model with a two-patch metapopulation model. Stochastic fecundity, survival and migration were investigated by permitting random variations between predetermined demographic boundary values based on experimental data. Lucilia eximia and Chrysomya albiceps were the species most susceptible to the risk of local extinction. Cochliomyia macellaria, C. megacephala and C. putoria exhibited lower risks of extinction when compared to the other species. The simultaneous analysis of stochastic fecundity and survival revealed an increase in the extinction risk for all species. When stochastic fecundity, survival and migration were simulated together, the coupled populations were synchronized in the five species. These results are discussed, emphasizing biological invasion and interspecific interaction dynamics.
Resumo:
In this paper a model, called ELLOBO running in STELLA II, was set to describe the plankton system of the Broa reservoir (SP). The three state variables of the model are: phytoplankton, zooplankton, and the fish Astyanax fasciatus. The forcing variables are: temperature, nitrate, phosphorus and solar radiation. The model did not consider the cycling of nutrients inside the reservoir. The results show that: temperature is the principal forcing variable in the phytoplankton dynamic and in the subsequent evolution of the whole system. The zooplankton predation was described by Odum's equation, and there is a strong random component in zooplankton grazing, which was essential for the model, because zooplankton estimates have high variance. One must collect data in a short space of time (maybe daily) to better explain the zooplankton and phytoplankton variation. Validation was performed using simple statistics (arithmetic mean, standard deviation) and the results show concordance between observed and simulated values. Overhead was used to calibrate some parameters and to validate the model. The highest overhead value (5%) imply in the better accordance between estimated and;observed state variables values. We believe this approach in Broa reservoir will provide an useful tool for future research and it could be used comparatively in other continental aquatic ecosystems. (C) 2000 Elsevier B.V. B.V. All rights reserved.