908 resultados para Prediction of random e_ects
Resumo:
The small intestine poses a major barrier to the efficient absorption of orally administered therapeutics. Intestinal epithelial cells are an extremely important site for extrahepatic clearance, primarily due to prominent P-glycoprotein-mediated active efflux and the presence of cytochrome P450s. We describe a physiologically based pharmacokinetic model which incorporates geometric variations, pH alterations and descriptions of the abundance and distribution of cytochrome 3A and P-glycoprotein along the length of the small intestine. Simulations using preclinical in vitro data for model drugs were performed to establish the influence of P-glycoprotein efflux, cytochrome 3A metabolism and passive permeability on drug available for absorption within the enterocytes. The fraction of drug escaping the enterocyte (F(G)) for 10 cytochrome 3A substrates with a range of intrinsic metabolic clearances were simulated. Following incorporation of P-glycoprotein in vitro efflux ratios all predicted F(G) values were within 20% of observed in vivo F(G). The presence of P-glycoprotein increased the level of cytochrome 3A drug metabolism by up to 12-fold in the distal intestine. F(G) was highly sensitive to changes in intrinsic metabolic clearance but less sensitive to changes in intestinal drug permeability. The model will be valuable for quantifying aspects of intestinal drug absorption and distribution.
Resumo:
This paper presents a predictive aggregation rate model for spray fluidized bed melt granulation. The aggregation rate constant was derived from probability analysis of particle–droplet contact combined with time scale analysis of droplet solidification and granule–granule collision rates. The latter was obtained using the principles of kinetic theory of granular flow (KTGF). The predicted aggregation rate constants were validated by comparison with reported experimental data for a range of binder spray rate, binder droplet size and operating granulator temperature. The developed model is particularly useful for predicting particle size distributions and growth using population balance equations (PBEs).
Resumo:
A main unsolved problem in the RNA World scenario for the origin of life is how a template-dependent RNA polymerase ribozyme emerged from short RNA oligomers obtained by random polymerization on mineral surfaces. A number of computational studies have shown that the structural repertoire yielded by that process is dominated by topologically simple structures, notably hairpin-like ones. A fraction of these could display RNA ligase activity and catalyze the assembly of larger, eventually functional RNA molecules retaining their previous modular structure: molecular complexity increases but template replication is absent. This allows us to build up a stepwise model of ligation- based, modular evolution that could pave the way to the emergence of a ribozyme with RNA replicase activity, step at which information-driven Darwinian evolution would be triggered. Copyright © 2009 RNA Society.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR CONSULTATION
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Purpose: Both phonological (speech) and auditory (non-speech) stimuli have been shown to predict early reading skills. However, previous studies have failed to control for the level of processing required by tasks administered across the two levels of stimuli. For example, phonological tasks typically tap explicit awareness e.g., phoneme deletion, while auditory tasks usually measure implicit awareness e.g., frequency discrimination. Therefore, the stronger predictive power of speech tasks may be due to their higher processing demands, rather than the nature of the stimuli. Method: The present study uses novel tasks that control for level of processing (isolation, repetition and deletion) across speech (phonemes and nonwords) and non-speech (tones) stimuli. 800 beginning readers at the onset of literacy tuition (mean age 4 years and 7 months) were assessed on the above tasks as well as word reading and letter-knowledge in the first part of a three time-point longitudinal study. Results: Time 1 results reveal a significantly higher association between letter-sound knowledge and all of the speech compared to non-speech tasks. Performance was better for phoneme than tone stimuli, and worse for deletion than isolation and repetition across all stimuli. Conclusions: Results are consistent with phonological accounts of reading and suggest that level of processing required by the task is less important than stimuli type in predicting the earliest stage of reading.
Resumo:
Purpose: Phonological accounts of reading implicate three aspects of phonological awareness tasks that underlie the relationship with reading; a) the language-based nature of the stimuli (words or nonwords), b) the verbal nature of the response, and c) the complexity of the stimuli (words can be segmented into units of speech). Yet, it is uncertain which task characteristics are most important as they are typically confounded. By systematically varying response-type and stimulus complexity across speech and non-speech stimuli, the current study seeks to isolate the characteristics of phonological awareness tasks that drive the prediction of early reading. Method: Four sets of tasks were created; tone stimuli (simple non-speech) requiring a non-verbal response, phonemes (simple speech) requiring a non-verbal response, phonemes requiring a verbal response, and nonwords (complex speech) requiring a verbal response. Tasks were administered to 570 2nd grade children along with standardized tests of reading and non-verbal IQ. Results: Three structural equation models comparing matched sets of tasks were built. Each model consisted of two 'task' factors with a direct link to a reading factor. The following factors predicted unique variance in reading: a) simple speech and non-speech stimuli, b) simple speech requiring a verbal response but not simple speech requiring a non-verbal-response, and c) complex and simple speech stimuli. Conclusions: Results suggest that the prediction of reading by phonological tasks is driven by the verbal nature of the response and not the complexity or 'speechness' of the stimuli. Findings highlight the importance of phonological output processes to early reading.
Resumo:
Acute life-threatening events are mostly predictable in adults and children. Despite real-time monitoring these events still occur at a rate of 4%. This paper describes an automated prediction system based on the feature space embedding and time series forecasting methods of the SpO2 signal; a pulsatile signal synchronised with heart beat. We develop an age-independent index of abnormality that distinguishes patient-specific normal to abnormal physiology transitions. Two different methods were used to distinguish between normal and abnormal physiological trends based on SpO2 behaviour. The abnormality index derived by each method is compared against the current gold standard of clinical prediction of critical deterioration. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
Immunoinformatics is the application of informatics techniques to molecules of the immune system. One of its principal goals is the effective prediction of immunogenicity, be that at the level of epitope, subunit vaccine, or attenuated pathogen. Immunogenicity is the ability of a pathogen or component thereof to induce a specific immune response when first exposed to surveillance by the immune system, whereas antigenicity is the capacity for recognition by the extant machinery of the adaptive immune response in a recall response. In thisbook, we introduce these subjects and explore the current state of play in immunoinformatics and the in silico prediction of immunogenicity.
Resumo:
Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.
Resumo:
The binding between peptide epitopes and major histocompatibility complex (MHC) proteins is a major event in the cellular immune response. Accurate prediction of the binding between short peptides and class I or class II MHC molecules is an important task in immunoinformatics. SVRMHC which is a novel method to model peptide-MHC binding affinities based on support rector machine regression (SVR) is described in this chapter. SVRMHC is among a small handful of quantitative modeling methods that make predictions about precise binding affinities between a peptide and an MHC molecule. As a kernel-based learning method, SVRMHC has rendered models with demonstrated appealing performance in the practice of modeling peptide-MHC binding.