945 resultados para Polymeric micelles
Resumo:
The structures of [Nd-2(Acc(6))(H2O)(6)](ClO4)(6) .(H2O)(6) (1) [Er-2(Acc(6))(4)(H2O)(8)](ClO4)(6) .(H2O)(11) (2) and [Ca-5(Acc(6))(12)(H2O)(6)](ClO4)(10).(H2O)(4) (3) (Acc(6) = 1-aminocyclohexane-1-carboxylic acid) have been determined by X-ray crystallography. The lanthanide complexes 1 and 2 are dimeric in which two lanthanide cations are bridged by four carboxylato groups of Acc(6) molecules. In addition, the neodymium complex (1) features the unidentate coordination of the carboxyl group of an Acc(6) molecule in place of a water molecule in the erbium complex (2). The coordination number in both 1 and 2 is eight. The calcium Acc(6) complex (3) is polymeric; three different calcium environments are observed in the asymmetric unit. Two calcium ions are hexa-coordinated and one is hepta-coordinated. Considerable differences are observed between the solid state structures of Ln(III) and Ca-II complexes of Acc(6
Resumo:
This paper deals with the two-dimensional electric field modelling and electric field stress calculations of different types of composite insulators used in high voltage distribution and transmission systems. The computer simulations are carried out by using a commercially available software package. The potential and electric filed results obtained for the actual insulator profiles for three types of composite/polymeric insulators are discussed and presented.
Resumo:
Novel mixed-matrix membranes prepared by blending sodium alginate (NaAlg) with polyvinyl alcohol (PVA) and certain heteropolyacids (HPAs), such as phosphomolybdic acid (PMoA), phosphotungstic acid (PWA) and silicotungstic acid (SWA), followed by ex-situ cross-linking with glutaraldehyde (GA) to achieve the desired mechanical and chemical stability, are reported for use as electrolytes in direct methanol fuel cells (DMFCs). NaAlg-PVA-HPA mixed matrices possess a polymeric network with micro-domains that restrict methanol cross-over. The mixed-matrix membranes are characterised for their mechanical and thermal properties. Methanol cross-over rates across NaAlg-PVA and NaAlg-PVA-HPA mixed-matrix membranes are studied by measuring the mass balance of methanol using a density meter. The DMFC using NaAlg-PVA-SWA exhibits a peak power-density of 68 mW cm(-2) at a load current-density of 225 mA cm(-2), while operating at 343 K. The rheological properties of NaAlg and NaAlg-PVA-SWA viscous solutions are studied and their behaviour validated by a non-Newtonian power-law.
Resumo:
Polymeric peroxides are equimolar alternating copolymers formed by the reaction of vinyl monomers with oxygen. Physicochemical studies on the microstructure and chain dynamics of poly(styrene peroxide) PSP were first carried out by Cais and Bovey. We have found that polyperoxides are formed as main intermediates in solid-propellant combustion by the interaction of the monomer and oxygen generated by the decomposition of the polymeric binder and the oxidizer ammonium perchlorate. The experimentally determined heat of degradation and that calculated from thermochemical considerations reveal that polyperoxides undergo highly exothermic primary degradation, the rate-controlling step being the O-O bond dissociation. A random-chain scission mechanism for the thermal degradation of polyperoxides has been proposed. The prediction of unusual exothermic degradation of polyperoxides has resulted in the discovery of an interesting new phenomenon of 'autopyrolysability' in polymers. Several new polyperoxides based on vinyl naphthalene have been synthesized. We have also found that PSP, in conjunction with amines, can be used as initiator at ambient temperature for the radical polymerization of vinyl monomers.
Resumo:
A polymeric sorbent containing triphenylphosphinimine residues has been obtained from crosslinked chloromethylated polystyrene by azidation, using phase-transfer catalysis, followed by reaction with triphenylphosphine at room temperature. The sorbent exhibits 100 % sorption selectivity for Fe(III) in the presence of Cu(II), Fe(II), Ni(II), Co(II), Mn(II), and Zn(II) in aqueous media. In the absence of Fe(III), however, Fe(II) is selectively sorbed over the other metal ions, and in the absence of both Fe(II) and Fe(III), Cu(II) has the highest selectivity of sorption on the resin. The sorption of Fe(III) is sensitive to pH, being maximum at pH not, vert, similar 2 and falling sharply at both higher and lower pH values. The sorbed Fe(III) is easily stripped with dilute HCl and the resulting protonated resin is regenerated to its original sorption capacity by treatment with dilute NaOH at room temperature.
Resumo:
Powders are essential materials in the pharmaceutical industry, being involved in majority of all drug manufacturing. Powder flow and particle size are central particle properties addressed by means of particle engineering. The aim of the thesis was to gain knowledge on powder processing with restricted liquid addition, with a primary focus on particle coating and early granule growth. Furthermore, characterisation of this kind of processes was performed. A thin coating layer of hydroxypropyl methylcellulose was applied on individual particles of ibuprofen in a fluidised bed top-spray process. The polymeric coating improved the flow properties of the powder. The improvement was strongly related to relative humidity, which can be seen as an indicator of a change in surface hydrophilicity caused by the coating. The ibuprofen used in the present study had a d50 of 40 μm and thus belongs to the Geldart group C powders, which can be considered as challenging materials in top-spray coating processes. Ibuprofen was similarly coated using a novel ultrasound-assisted coating method. The results were in line with those obtained from powders coated in the fluidised bed process mentioned above. It was found that the ultrasound-assisted method was capable of coating single particles with a simple and robust setup. Granule growth in a fluidised bed process was inhibited by feeding the liquid in pulses. The results showed that the length of the pulsing cycles is of importance, and can be used to adjust granule growth. Moreover, pulsed liquid feed was found to be of greater significance to granule growth in high inlet air relative humidity. Liquid feed pulsing can thus be used as a tool in particle size targeting in fluidised bed processes and in compensating for changes in relative humidity of the inlet air. The nozzle function of a two-fluid external mixing pneumatic nozzle, typical for small scale pharmaceutical fluidised bed processes, was studied in situ in an ongoing fluidised bed process with particle tracking velocimetry. It was found that the liquid droplets undergo coalescence as they proceed away from the nozzle head. The coalescence was expected to increase droplet speed, which was confirmed in the study. The spray turbulence was studied, and the results showed turbulence caused by the event of atomisation and by the oppositely directed fluidising air. It was concluded that particle tracking velocimetry is a suitable tool for in situ spray characterisation. The light transmission through dense particulate systems was found to carry information on particle size and packing density as expected based on the theory of light scattering by solids. It was possible to differentiate binary blends consisting of components with differences in optical properties. Light transmission showed potential as a rapid, simple and inexpensive tool in characterisation of particulate systems giving information on changes in particle systems, which could be utilised in basic process diagnostics.
Resumo:
A series of isomeric cationic surfactants (S1-S5) bearing a long alkyl chain that carries a 1,4-phenylene unit and a trimethyl ammonium headgroup was synthesized; the location of the phenyl ring within the alkyl tail was varied in an effort to understand its influence on the amphiphilic properties of the surfactants. The cmc's of the surfactants were estimated using ionic conductivity measurements and isothermal calorimetric titrations (ITC); the values obtained by the two methods were found to be in excellent agreement. The ITC measurements provided additional insight into the various thermodynamic parameters associated with the micellization process. Although all five surfactants have exactly the same molecular formula, their micellar properties were seen to vary dramatically depending on the location of the phenyl ring; the cmc was seen to decrease by almost an order of magnitude when the phenyl ring was moved from the tail end (cmc of S1 is 23 mM) to the headgroup region (cmc of S5 is 3 mM). In all cases, the enthalpy of micellization was negative but the entropy of micellization was positive, suggesting that in all of these systems the formation of micelles is both enthalpically and entropically favored. As expected, the decrease in cmc values upon moving the phenyl ring from the tail end to he headgroup region is accompanied by an increase in the thermodynamic driving force (Delta G) for micellization. To understand further the differences in the micellar structure of these surfactants, small-angle neutron scattering (SANS) measurements were carried out; these measurements reveal that the aggregation number of the micelles increases as the cmc decreases. This increase in the aggregation number is also accompanied by an increase in the asphericity of the micellar aggregate and a decrease in the fractional charge. Geometric packing arguments are presented to account for these changes in aggregation behavior as a function of phenyl ring location.
Resumo:
The oxidation of NADH and accompanying reduction of oxygen to H2O2 stimulated by polyvanadate was markedly inhibited by SOD and cytochrome c. The presence of decavanadate, the polymeric form, is necessary for obtaining the microsomal enzyme-catalyzed activity. The accompanying activity of reduction of cytochrome c was found to be SOD-insensitive and therefore does not represent superoxide formation. The reduction of cytochrome c by vanadyl sulfate was also SOD-insensitive. In the presence of H2O2 all the forms of vanadate were able to oxidize reduced cytochrome c, which was sensitive to mannitol, tris and also catalase, indicating H202-dependent generation of hydroxyl radicals. Using ESR and spin trapping technique only hydroxyl radicals, but not superoxide anion radicals, were detected during polyvanadate-dependent NADH oxidation.
Resumo:
The human malarial parasite, Image , has been found to synthesize heme Image , despite the accumulation of large quantities of polymeric heme derived from the hemoglobin of the red cell host. The parasite δ-aminolevulinate dehydrase level is significantly lower than that of the host and its inhibition by succinylacetone leads to inhibition of parasite protein synthesis and viability.
Resumo:
Oxidation of NADH by decavanadate, a polymeric form vanadate with a cage-like structure, in presence of rat liver microsomes followed a biphasic pattern. An initial slow phase involved a small rate of oxygen uptake and reduction of 3 of the 10 vanadium atoms. This was followed by a second rapid phase in which the rates of NADH oxidation and oxygen uptake increased several-fold with a stoichiometry of NADH: O2 of 1ratio1. The burst of NADH oxidation and oxygen uptake which occurs in phosphate, but not in Tris buffer, was prevented by SOD, catalase, histidine, EDTA, MnCl2 and CuSO4, but not by the hydroxyl radical quenchers, ethanol, methanol, formate and mannitol. The burst reaction is of a novel type that requires the polymeric structure of decavanadate for reduction of vanadium which, in presence of traces of H2O2, provides a reactive intermediate that promotes transfer of electrons from NADH to oxygen.
Resumo:
Many wormlike micellar systems exhibit appreciable shear thinning due to shear-induced alignment. As the micelles get aligned introducing directionality in the system, the viscoelastic properties are no longer expected to be isotropic. An optical-tweezers-based active microrheology technique enables us to probe the out-of-equilibrium rheological properties of a wormlike micellar system simultaneously along two orthogonal directions-parallel to the applied shear, as well as perpendicular to it. While the displacements of a trapped bead in response to active drag force carry signature of conventional shear thinning, its spontaneous position fluctuations along the perpendicular direction manifest an orthogonal shear thickening, an effect hitherto unobserved. Copyright (C) EPLA, 2010
Resumo:
A first comprehensive investigation on the deflagration of ammonium perchlorate (AP) in the subcritical regime, below the low pressure deflagration limit (LPL, 2.03 MPa) christened as regime I$^{\prime}$, is discussed by using an elegant thermodynamic approach. In this regime, deflagration was effected by augmenting the initial temperature (T$_{0}$) of the AP strand and by adding fuels like aliphatic dicarboxylic acids or polymers like carboxy terminated polybutadiene (CTPB). From this thermodynamic model, considering the dependence of burning rate ($\dot{r}$) on pressure (P) and T$_{0}$, the true condensed (E$_{\text{s,c}}$) and gas phase (E$_{\text{s,g}}$) activation energies, just below and above the surface respectively, have been obtained and the data clearly distinguishes the deflagration mechanisms in regime I$^{\prime}$ and I (2.03-6.08 MPa). Substantial reduction in the E$_{\text{s,c}}$ of regime I$^{\prime}$, compared to that of regime I, is attributed to HClO$_{4}$ catalysed decomposition of AP. HClO$_{4}$ formation, which occurs only in regime I$^{\prime}$, promotes dent formation on the surface as revealed by the reflectance photomicrographs, in contrast to the smooth surface in regime I. The HClO$_{4}$ vapours, in regime I$^{\prime}$, also catalyse the gas phase reactions and thus bring down the E$_{\text{s,g}}$ too. The excess heat transferred on to the surface from the gas phase is used to melt AP and hence E$_{\text{s,c}}$, in regime I, corresponds to the melt AP decomposition. It is consistent with the similar variation observed for both the melt layer thickness and $\dot{r}$ as a function of P. Thermochemical calculations of the surface heat release support the thermodynamic model and reveal that the AP sublimation reduces the required critical exothermicity of 1108.8 kJ kg$^{-1}$ at the surface. It accounts for the AP not sustaining combustion in the subcritical regime I$^{\prime}$. Further support for the model comes from the temperature-time profiles of the combustion train of AP. The gas and condensed phase enthalpies, derived from the profile, give excellent agreement with those computed thermochemically. The $\sigma _{\text{p}}$ expressions derived from this model establish the mechanistic distinction of regime I$^{\prime}$ and I and thus lend support to the thermodynamic model. On comparing the deflagration of strand against powder AP, the proposed thermodynamic model correctly predicts that the total enthalpy of the condensed and gas phases remains unaltered. However, 16% of AP particles undergo buoyant lifting into the gas phase in the `free board region' (FBR) and this renders the demarcation of the true surface difficult. It is found that T$_{\text{s}}$ lies in the FBR and due to this, in regime I$^{\prime}$, the E$_{\text{s,c}}$ of powder AP matches with the E$_{\text{s,g}}$ of the pellet. The model was extended to AP/dicarboxylic acids and AP/CTPB mixture. The condensed ($\Delta $H$_{1}$) and gas phase ($\Delta $H$_{2}$) enthalpies were obtained from the temperature profile analyses which fit well with those computed thermochemically. The $\Delta $H$_{1}$ of the AP/succinic acid mixture was found just at the threshold of sustaining combustion. Indeed the lower homologue malonic acid, as predicted, does not sustain combustion. In vaporizable fuels like sebacic acid the E$_{\text{s,c}}$ in regime I$^{\prime}$, understandably, conforms to the AP decomposition. However, the E$_{\text{s,c}}$ in AP/CTPB system corresponds to the softening of the polymer which covers AP particles to promote extensive condensed phase reactions. The proposed thermodynamic model also satisfactorily explains certain unique features like intermittent, plateau and flameless combustion in AP/ polymeric fuel systems.
Resumo:
High quality, single-crystalline alpha-MoO3 nanofibers are synthesized by rapid hydrothermal method using a polymeric nitrosyl-complex of molybdenum(II) as molybdenum source without employing catalysts, surfactants, or templates. The possible reaction pathway is decomposition and oxidation of the complex to the polymolybdate and then surface condensation on the energetically favorable 001] direction in the initially formed nuclei of solid alpha-MoO3 under hydrothermal conditions. Highly crystalline alpha-MoO3 nanofibers have grown along 001] with lengths up to several micrometres and widths ranging between 280 and 320 nm. The alpha-MoO3 nanofibers exhibit desirable electrochemical properties such as high capacity reversibility as a cathode material of a Li-ion battery.
Resumo:
The polyvinylidene fluoride (PVDF) membrane is modified by the chemical etchant-route employing a sodium naphthalene charge-transfer complex followed by impregnation with Nafion ionomer or polyvinyl alcohol (PVA)-polystyrene sulfonic acid (PSSA) polymeric blend solutions by a dip-coating technique to form pore-filled-membrane electrolytes for application in direct methanol fuel cells (DMFCs). The number of coatings on the surface-modified PVDF membrane is varied between 5 and 15 and is found to be optimum at 10 layers both for Nafion and PVA-PSSA impregnations for effective DMFC performance. Hydrophilicity of the modified-membrane electrolytes is studied by determining average contact angle and surface-wetting energy. Morphology of the membranes is analyzed by a cross-sectional scanning electron microscope. The modified PVDF membrane electrolytes are characterized for their water-methanol sorption in conjunction with their mechanical properties, proton conductivity, and DMFC performance. Air permeability for the modified membranes is studied by a capillary-flow porometer. Methanol crossover flux across modified-PVDF-membrane electrolytes is studied by measuring the mass balance of methanol using a density meter. DMFCs employing membrane electrode assemblies with the modified PVDF membranes exhibit a peak power-density of 83 mW/cm(2) with Nafion impregnation and 59 mW/cm(2) for PVA-PSSA impregnation, respectively. Among the membranes studied here, stabilities of modified-pore-filled PVDF-Nafion and PVDF-PVA-PSSA membranes with 10-layers coat are promising for application in DMFCs. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3518774] All rights reserved.
Resumo:
Cryogel matrices composed of different polymeric blends were synthesized, yielding a unique combination of hydrophilicity and hydrophobicity with the presence or absence of charged surface. Four such cryogel matrices composed of polyacrylamide-chitosan (PAAC), poly(N-isopropylacrylamide)-chitosan, polyacrylonitrile (PAN), and poly(N-isopropylacrylamide) were tested for growth of different hybridoma cell lines and production of antibody in static culture. All the matrices were capable for the adherence of hybridoma cell lines 6A4D7, B7B10, and H9E10 to the polymeric surfaces as well as for the efficient monoclonal antibody (mAb) production. PAAC proved to be relatively better in terms of both mAb production and cell growth. Further, PAAC cryogel was designed into three different formats, monolith, disks, and beads, and used as packing material for packed-bed bioreactor. Longterm cultivation of 6A4D7 cell line on PAAC cryogel scaffold in all the three formats could be successfully done for a period of 6 weeks under static conditions. Continuous packed-bed bioreactor was setup using 6A4D7 hybridoma cell line in the three reactor formats. The reactors ran continuously for a period of 60 days during which mAb production and metabolism of cells in the bioreactors were monitored periodically. The monolith bioreactor performed most efficiently over a period of 60 days and produced a total of 57.5 mg of antibody in the first 30 days (in 500 mL) with a highest concentration of 115 mu g mL(-1), which is fourfold higher than t-flask culture. The results demonstrate that appropriate chemistry and geometry of the bioreactor matrix for cell growth and immobilization can enhance the reactor productivity. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 170-180, 2011