931 resultados para Polarization interferometers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A density-functional self-consistent calculation of the ground-state electronic density of quantum dots under an arbitrary magnetic field is performed. We consider a parabolic lateral confining potential. The addition energy, E(N+1)-E(N), where N is the number of electrons, is compared with experimental data and the different contributions to the energy are analyzed. The Hamiltonian is modeled by a density functional, which includes the exchange and correlation interactions and the local formation of Landau levels for different equilibrium spin populations. We obtain an analytical expression for the critical density under which spontaneous polarization, induced by the exchange interaction, takes place.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure. Microstrip antennas are suitable for wireless applications due to their low cost, high gain and ease of fabrication. But the major disadvantage of micro strip antennas is their inherent narrow bandwidth. A lot of techniques are introduced by the researchers all over the world to enhance the bandwidth of micro strip patch antennas. The thesis addresses an attempt to enhance the bandwidth of micro strip patch antennas by incorporating impedance matching strip as a part of the micro strip patch antenna. The first part of the thesis deals with the broadband operation of the tilted square slot and polygonal slot loaded square micro strip patch antennas. The resonant mechanisms are clearly mentioned using the simulation and experimental studies. The bandwidth of the polygonal slotted broadband patch antenna is again enhanced by implementing an Lstrip feed mechanism. In the second major part of the thesis, a novel gain enhancement technique for single band and broadband square micro strip patch antennas is achieved by implementing offset stacked configurations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we show that the orthorhombic phase of FeSi2 (stable at room temperature) displays a sizable anisotropy in the infrared spectra, with minor effects in the Raman data too. This fact is not trivial at all, since the crystal structure corresponds to a moderate distortion of the fluorite symmetry. Our analysis is carried out on small single crystals grown by flux transport, through polarization-resolved far-infrared reflectivity and Raman measurements. Their interpretation has been obtained by means of the simulated spectra with tight-binding molecular dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advent of satellite communication and radio astronomy, the need for large and efficient reflector antennas had triggered a widespread investigation in reflector feed design techniques. Major improvements sought are reduction in spill-over, cross polarization losses and the enhancement of aperture efficiency. The search for such a feed culminated in the corrugated horn. The main idea behind the present work is to use the H-plane sectoral horns fitted with,corrugated flanges as feeds of a paraboloid and see how the secondary pattern of the reflector antenna varies with different parameters of the feed. An offset paraboloid is used as the secondary reflector in order to avoid the adverse effect of aperture ‘blocking by the feed horn structure on the secondary radiation pattern. The measurements were repeated for three different H-plane sectoral horns with the same set of corrugated flanges at various X-band frequencies. The following parameters of the whole system are studied: (a) Beam shaping. (b) Gain. (c) Variation of VSWR and (d) Cross polarization

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetoresistance across interfaces in the itinerant ferromagnetic oxide SrRuO3 have been studied. To define appropriately the interfaces, epitaxial thin films have been grown on bicrystalline and laser-patterned SrTiO3 substrates. Comparison is made with results obtained on similar experiments using the double-exchange ferromagnetic oxide La2/3Sr1/3MnO3. It is found that in SrRuO3, interfaces induce a substantial negative magnetoresistance, although no traces of the low-field spin tunneling magnetoresistance are found. We discuss these results on the basis of the distinct degree of spin polarization in ruthenates and manganites and the different nature of the surface magnetic layer formed at interfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on experiments of spin filtering through ultrathin single-crystal layers of the insulating and ferromagnetic oxide BiMnO3 (BMO). The spin polarization of the electrons tunneling from a gold electrode through BMO is analyzed with a counterelectrode of the half-metallic oxide La2/3Sr1/3MnO3 (LSMO). At 3 K we find a 50% change of the tunnel resistances according to whether the magnetizations of BMO and LSMO are parallel or opposite. This effect corresponds to a spin-filtering efficiency of up to 22%. Our results thus show the potential of complex ferromagnetic insulating oxides for spin filtering and injection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flange technique, suggested by Reynolds72 is simple technique to improve antenna characteristics. Using flange technique we can trim the antenna characteristic by suitably adjusting the flange parameters75. Later corrugated flanges87 are used for beam shaping. The important parameters of the corrugated flanges are (a) flange angle, (b) flange width, (c) flange position, (d) conductivity of the flange, (e) amplitude excitation of the flange elements, (f) period of corrugation etc. Compared to a compound horn the flange technique offers great convenience in trimming antenna characteristics. Horns are commonly used as a feed in radar and satellite communications. A large number of work had been done to improve the characteristics of horn antennas. It is an established fact that grooved walls on the inner surface of a horn can improve the antenna characteristics44. Corrugated comb surface can be used for the circular polarization98, tilt of polarization99 etc. This suggests the possibility to combine these two phenomena and to obtain a resultant beam. This thesis presents the result of an investigation to study the possibility of controlling different antenna characteristics like polarization, beam shaping, matching etc, using corrugated flange techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrical properties of polymers make up an inherently interdisciplinary topic, being closely associated, on the one hand, with the mechanical properties of polymers polarization and relaxation) and, on the other hand, with the semi conductive properties (conduction and break down). In addition, unlike conventional technologies, which use these properties in its various applications like antistatic coatings, rechargeable batteries, sensors, electrochromic devices, electrochemical devices etc, microwave technology extract the microwave absorbing ability of electrically conducting polymers. The conducting polymers are widely used in its potential applications like electro magnetic interference shielding, satellite communication links, beam steering radars, frequency selective surfaces etc. Considering the relevance of microwave applications of conducting polymers, the study of microwave properties of conducting polymers stands poised to become a compelling choice for synthetic chemists and condensed - matter physicists, physical chemists and material scientists, electrochemists and polymer scientists. The main aim of the present work is to study the microwave and low frequency properties of various conducting polymers, conducting semi-interpenetrating networks, conducting copolymers and to characterise it. Also this thesis collated the microwave properties of these conducting systems and exposes the various technologically important applications in the industrial, scientific, communication and defence applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on pulse propagation in single mode optical fibers have attracted interest from a wide area of science and technology as they have laid down the foundation for an in-depth understanding of the underlying physical principles, especially in the field of optical telecommunications. The foremost among them is discovery of the optical soliton which is considered to be one of the most significant events of the twentieth century owing to its fantastic ability to propagate undistorted over long distances and to remain unaflected after collision with each other. To exploit the important propertia of optical solitons, innovative mathematical models which take into account proper physical properties of the single mode optical fibers demand special attention. This thesis contains a theoretical analysis of the studies on soliton pulse propagation in single mode optical fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brueckner-Hartree-Fock formalism is applied to study spin polarized neutron matter properties. Results of the total energy per particle as a function of the spin polarization and density are presented for two modern realistic nucleon-nucleon interactions, Nijmegen II and Reid93. We find that the dependence of the energy on the spin polarization is practically parabolic in the full range of polarizations. The magnetic susceptibility of the system is computed. Our results show no indication of a ferromagnetic transition which becomes even more difficult as the density increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the pre—laser era it was difficult to believe that the optical properties of a medium depend upon the intensity of the radiation incident on it. The basis for this conclusion is that the electric field strength associated with the conventional light sources used before the advent of lasers was much smaller than (103 V/cm) the field sttrengths of atomic or interatomic fields (2 107 —- 10” V/cm). The radiation with such low intensity is not able to affect atomic fields to the extent of changing optical parameters. The invention of laser in 1960 was a turning point. The high degree of coherence of the laser radiation provides high spatial concentration of optical power. With the availability of the femtosecond lasers it has become possible to get extremely high peak powers 2 1013 W/cmz). At such high fields, the relationship between electric ‘polarization P and the electric field strength E ceases to be linear and several nonlinear effects begin to occur. Nonlinear absorption, a branch of nonlinear optics, refers to the interaction between radiation and matter accompanied by absorption of more than one photon. Nonlinear absorption has acquired great importance after the invention of high power lasers. One of the objectives of the present work is to investigate the nonlinear absorption processes occurring in fullerene, selected organic solvents and laser dyes. Fullerenes and laser dyes were chosen because of their highly nonlinear behaviour. Fullerenes, the most beautiful among molecules, offer fascinating field of research owinglto their significant structural properties. As toluene, benzene and carbon disulphide are themost widely used solvents for fullerenes, it seems important to study the nonlinear properties of these liquids as well. Like fullerenes, laser dyes also possess highly delocalized 7r electrons which are responsible for their nonlinear absorption. Dye lasers were the fulfillment of an experimenter’s pipe dream - to have a laser that is easily tunable over a wide range of wavelengths. A better understandingof the photophysical properties of laser dyes can significantly enhance the development and technology of dye lasers. We studied the nonlinear absorption properties of two rhodamine dyes to have some insight into their nonlinear optical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the recent progress and rapid increase in the field of communication, the designs of antennas for small mobile terminals with enhanced radiation characteristics are acquiring great importance. Compactness, efficiency, high data rate capacity etc. are the major criteria for the new generation antennas. The challenging task of the microwave scientists and engineers is to design a compact printed radiating structure having broadband behavior along with good efficiency and enhanced gain. Printed antenna technology has received popularity among antenna scientists after the introduction of planar transmission lines in mid-seventies. When we view the antenna through a transmission line concept, the mechanism behind any electromagnetic radiator is quite simple and interesting. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and orientation of the discontinuities control the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non-resonant. This thesis deals with antennas that are developed from a class of transmission lines known as coplanar strip-CPS, a planar analogy of parallel pair transmission line. The specialty of CPS is its symmetric structure compared to other transmission lines, which makes the antenna structures developed from CPS quite simple for design and fabrication. The structural modifications on either metallic strip of CPS results in different antennas. The first part of the thesis discusses a single band and dual band design derived from open ended slot lines which are very much suitable for 2.4 and 5.2 GHz WLAN applications. The second section of the study is vectored into the development of enhanced gain dipoles. A single band dipole and a wide band enhanced gain dipole suitable for 5.2/5.8 GHZ band and imaging applications are developed and discussed. Last part of the thesis discusses the development of directional UWBs. Three different types of ultra-compact UWBs are developed and almost all the frequency domain and time domain analysis of the structures are discussed.