984 resultados para Plant-soil relationships


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to determine the impact of three levels of [CO2] and two levels of soil-nutrient availability on the growth and physiological responses of two tropical tree species differing in their ecological group: Croton urucurana Baillon, a pioneer (P), and also Cariniana legalis (Martius) Kuntze, a late succession (LS). We aimed to test the hypothesis that P species have stronger response to elevated [CO2] than LS species as a result of differences in photosynthetic capacity and growth kinetics between both functional groups. Seedlings of both species were grown in open-top-chambers under high (HN) or low (LN) soil-nutrient supply and exposed to ambient (380 mu mol mol(-1)) or elevated (570 and 760 mu mol mol(-1)) [CO2]. Measurements of gas exchange, chlorophyll a fluorescence, seedling biomass and allocation were made after 70 days of treatment. Results suggest that elevated [CO2] significantly enhances the photosynthetic rates (A) and biomass production in the seedlings of both species, but that soil-nutrient supply has the potential to modify the response of young tropical trees to elevated [CO2]. In relation to plants grown in ambient [CO2], the P species grown under 760 mu mol mol(-1) [CO2] showed increases of 28% and 91% in A when grown in LN and HN, respectively. In P species grown under 570 mu mol mol(-1) [CO2], A increased by 16% under HN, but there was no effect in LN. In LS species, the enhancement of A by effect of 760 mu mol mol(-1) [CO2] was 30% and 70% in LN and HN, respectively. The exposure to 570 mu mol mol(-1) [CO2] stimulated A by 31% in HN, but was no effect in LN. Reductions in stomatal conductance (g(s)) and transpiration (E), as a result of elevated [CO2] were observed. Increasing the nutrient supply from low to high increased both the maximum rate of carboxylation (V-cmax) and maximum potential rate of electron transport (J(max)). As the level of [CO2] increased, both the V-cmax and the J(max) were found to decrease, whereas the J(max)/V-cmax ratio increased. In the LS species, the maximum efficiency of PSII (F-v/F-m) was higher in the 760 mu mol mol(-1) [CO2] treatment relative to other [CO2] treatments. The results suggest that when grown under HN and the highest [CO2], the performance of the P species C. urucurana, in terms of photosynthesis and biomass enhancement, is better than the LS species C. legalis. However, a larger biomass is allocated to roots when C. legalis seedlings were exposed to elevated [CO2]. This response would be an important strategy for plant survival and productivity of the LS species under drought stresses conditions on tropical environments in a global-change scenario. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil), during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle), found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4) in A. schaeriana and 6.26 x 10³ in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species), by redundancy analysis (RDA), also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conservatism is a central theme of organismic evolution. Related species share characteristics due to their common ancestry. Some concern have been raised among evolutionary biologists, whether such conservatism is an expression of natural selection or of a constrained ability to adapt. This thesis explores adaptations and constraints within the plant reproductive phase, particularly in relation to the evolution of fleshy fruit types (berries, drupes, etc.) and the seasonal timing of flowering and fruiting. The different studies were arranged along a hierarchy of scale, with general data sets sampled among seed plants at the global scale, through more specific analyses of character evolution within the genus Rhamnus s.l. L. (Rhamnaceae), to descriptive and experimental field studies in a local population of Frangula alnus (Rhamnaceae). Apart from the field study, this thesis is mainly based on comparative methods explicitly incorporating phylogenetic relationships. The comparative study of Rhamnus s.l. species included the reconstruction of phylogenetic hypotheses based on DNA sequences. Among geographically overlapping sister clades, biotic pollination was not correlated with higher species richness when compared to wind pollinated plants. Among woody plants, clades characterized by fleshy fruit types were more species rich than their dry-fruited sister clades, suggesting that the fleshy fruit is a key innovation in woody habitats. Moreover, evolution of fleshy fruits was correlated with a change to more closed (darker) habitats. An independent contrast study within Rhamnus s.l. documented allometric relations between plant and fruit size. As a phylogenetic constraint, allometric effects must be considered weak or non-existent, though, as they did not prevail among different subclades within Rhamnus s.l. Fruit size was correlated with seed size and seed number in F. alnus. This thesis suggests that frugivore selection on fleshy fruit may be important by constraining the upper limits of fruit size, when a plant lineage is colonizing (darker) habitats where larger seed size is adaptive. Phenological correlations with fruit set, dispersal, and seed size in F. alnus, suggested that the evolution of reproductive phenology is constrained by trade-offs and partial interdependences between flowering, fruiting, dispersal, and recruitment phases. Phylogenetic constraints on the evolution of phenology were indicated by a lack of correlation between flowering time and seasonal length within Rhamnus cathartica and F. alnus, respectively. On the other hand, flowering time was correlated with seasonal length among Rhamnus s.l. species. Phenological differences between biotically and wind pollinated angiosperms also suggested adaptive change in reproductive phenology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat loss and fragmentation have a prominent role in determining the size of plant populations, and can affect plant-pollinator interactions. It is hypothesized that in small plant populations the ability to set seeds can be reduced due to limited pollination services, since individuals in small populations can receive less quantity or quality of visits. In this study, I investigated the effect of population size on plant reproductive success and insect visitation in 8 populations of two common species in the island of Lesvos, Greece (Mediterranean Sea), Echium plantagineum and Ballota acetabulosa, and of a rare perennial shrub endemic to north-central Italy, Ononis masquillierii. All the three species depended on insect pollinators for sexual reproduction. For each species, pollen limitation was present in all or nearly all populations, but the relationship between pollen limitation and population size was only present in Ononis masquillierii. However, in Echium plantagineum, significant relationships between both open-pollinated and handcrossed-pollinated seed sets and population size were found, being small populations comparatively less productive than large ones. Additionally, for this species, livestock grazing intensity was greater for small populations and for sparse patches, and had a negative influence on productivity of the remnant plants. Both Echium plantagineum and Ballota acetabulosa attracted a great number of insects, representing a wide spectrum of pollinators, thereby can be considered as generalist species. For Ballota acetabulosa, the most important pollinators were megachilid female bees, and insect diversity didn’t decrease with decreasing plant population size. By contrast, Ononis masquillierii plants generally received few visits, with flowers specialized on small bees (Lasioglossum spp.), representing the most important insect guild. In Echium plantagineum and Ballota acetabulosa, plants in small and large populations received the same amount of visits per flower, and no differences in the number of intraplant visited flowers were detected. On the contrary, large Ononis populations supported higher amounts of pollinators than small ones. At patch level, high Echium flower density was associated with more and higher quality pollinators. My results indicate that small populations were not subject to reduced pollination services than large ones in Echium plantagineum and Ballota acetabulosa, and suggest that grazing and resource limitation could have a major impact on population fitness in Echium plantagineum. The absence of any size effects in these two species can be explained in the light of their high local abundance, wide habitat specificity, and ability to compete with other co-flowering species for pollinators. By contrast, size represents a key characteristic for both pollination and reproduction in Ononis masquillierii populations, as an increase in size could mitigate the negative effects coming from the disadvantageous reproductive traits of the species. Finally, the widespread occurrence of pollen limitation in the three species may be the result of 1) an ongoing weakening or disruption of plantpollinator interactions derived from ecological perturbations, 2) an adaptive equilibrium in response to stochastic processes, and 3) the presence of unfavourable reproductive traits (for Ononis masquillierii).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmaceuticals are useful tools to prevent and treat human and animal diseases. Following administration, a significant fraction of pharmaceuticals is excreted unaltered into faeces and urine and may enter the aquatic ecosystem and agricultural soil through irrigation with recycled water, constituting a significant source of emerging contaminants into the environment. Understanding major factors influencing their environmental fate is consequently needed to value the risk, reduce contamination, and set up bioremediation technologies. The antiviral drug Tamiflu (oseltamivir carboxylate, OC) has received recent attention due to the potential use as a first line defence against H5N1 and H1N1 influenza viruses. Research has shown that OC is not removed during conventional wastewater treatments, thus having the potential to enter surface water bodies. A series of laboratory experiments investigated the fate and the removal of OC in surface water systems in Italy and Japan and in a municipal wastewater treatment plant. A preliminary laboratory study investigated the persistence of the active antiviral drug in water samples from an irrigation canal in northern Italy (Canale Emiliano Romagnolo). After an initial rapid decrease, OC concentration slowly decreased during the remaining incubation period. Approximately 65% of the initial OC amount remained in water at the end of the 36-day incubation period. A negligible amount of OC was lost both from sterilized water and from sterilized water/sediment samples, suggesting a significant role of microbial degradation. Stimulating microbial processes by the addition of sediments resulted in reduced OC persistence. Presence of OC (1.5 μg mL-1) did not significantly affect the metabolic potential of the water microbial population, that was estimated by glyphosate and metolachlor mineralization. In contrast, OC caused an initial transient decrease in the size of the indigenous microbial population of water samples. A second laboratory study focused on basic processes governing the environmental fate of OC in surface water from two contrasting aquatic ecosystems of northern Italy, the River Po and the Venice Lagoon. Results of this study confirmed the potential of OC to persist in surface water. However, the addition of 5% of sediments resulted in rapid OC degradation. The estimated half-life of OC in water/sediment of the River Po was 15 days. After three weeks of incubation at 20 °C, more than 8% of 14C-OC evolved as 14CO2 from water/sediment samples of the River Po and Venice Lagoon. OC was moderately retained onto coarse sediments from the two sites. In water/sediment samples of the River Po and Venice Lagoon treated with 14C-OC, more than 30% of the 14C-residues remained water-extractable after three weeks of incubation. The low affinity of OC to sediments suggests that the presence of sediments would not reduce its bioavailability to microbial degradation. Another series of laboratory experiments investigated the fate and the removal of OC in two surface water ecosystems of Japan and in the municipal wastewater treatment plant of the city of Bologna, in Northern Italy. The persistence of OC in surface water ranged from non-detectable degradation to a half-life of 53 days. After 40 days, less than 3% of radiolabeled OC evolved as 14CO2. The presence of sediments (5%) led to a significant increase of OC degradation and of mineralization rates. A more intense mineralization was observed in samples of the wastewater treatment plant when applying a long incubation period (40 days). More precisely, 76% and 37% of the initial radioactivity applied as 14C-OC was recovered as 14CO2 from samples of the biological tank and effluent water, respectively. Two bacterial strains growing on OC as sole carbon source were isolated and used for its removal from synthetic medium and environmental samples, including surface water and wastewater. Inoculation of water and wastewater samples with the two OC-degrading strains showed that mineralization of OC was significantly higher in both inoculated water and wastewater, than in uninoculated controls. Denaturing gradient gel electrophoresis and quantitative PCR analysis showed that OC would not affect the microbial population of surface water and wastewater. The capacity of the ligninolytic fungus Phanerochaete chrysosporium to degrade a wide variety of environmentally persistent xenobiotics has been largely reported in literature. In a series of laboratory experiments, the efficiency of a formulation using P. chrysosporium was evaluated for the removal of selected pharmaceuticals from wastewater samples. Addition of the fungus to samples of the wastewater treatment plant of Bologna significantly increased (P < 0.05) the removal of OC and three antibiotics, erythromycin, sulfamethoxazole, and ciprofloxacin. Similar effects were also observed in effluent water. OC was the most persistent of the four pharmaceuticals. After 30 days of incubation, approximately two times more OC was removed in bioremediated samples than in controls. The highest removal efficiency of the formulation was observed with the antibiotic ciprofloxacin. The studies included environmental aspects of soil contamination with two emerging veterinary contaminants, such as doramectin and oxibendazole, wich are common parasitic treatments in cattle farms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire blight, caused by the gram negative bacterium Erwinia amylovora, is one of the most destructive bacterial diseases of Pomaceous plants. Therefore, the development of reliable methods to control this disease is desperately needed. This research investigated the possibility to interfere, by altering plant metabolism, on the interactions occurring between Erwinia amylovora, the host plant and the epiphytic microbial community in order to obtain a more effective control of fire blight. Prohexadione-calcium and trinexapac-ethyl, two dioxygenase inhibitors, were chosen as a chemical tool to influence plant metabolism. These compounds inhibit the 2-oxoglutarate-dependent dioxygenases and, therefore, they greatly influence plant metabolism. Moreover, dioxygenase inhibitors were found to enhance plant resistance to a wide range of pathogens. In particular, dioxygenase inhibitors application seems a promising method to control fire blight. From cited literature, it is assumed that these compounds increase plant defence mainly by a transient alteration of flavonoids metabolism. We tried to demonstrate, that the reduction of susceptibility to disease could be partially due to an indirect influence on the microbial community established on plant surface. The possibility to influence the interactions occurring in the epiphytic microbial community is particularly interesting, in fact, the relationships among different bacterial populations on plant surface is a key factor for a more effective biological control of plant diseases. Furthermore, we evaluated the possibility to combine the application of dioxygenase inhibitors with biological control in order to develop an integrate strategy for control of fire blight. The first step for this study was the isolation of a pathogenic strain of E. amylovora. In addition, we isolated different epiphytic bacteria, which respond to general requirements for biological control agents. Successively, the effect of dioxygenase inhibitors treatment on microbial community was investigated on different plant organs (stigmas, nectaries and leaves). An increase in epiphytic microbial population was found. Further experiments were performed with aim to explain this effect. In particular, changes in sugar content of nectar were observed. These changes, decreasing the osmotic potential of nectar, might allow a more consistent growth of epiphytic bacteria on blossoms. On leaves were found similar differences as well. As far as the interactions between E. amylovora and host plant, they were deeply investigated by advanced microscopical analysis. The influence of dioxygenase inhibitors and SAR inducers application on the infection process and migration of pathogen inside different plant tissues was studied. These microscopical techniques, combined with the use of gpf-labelled E. amylovora, allowed the development of a bioassay method for resistance inducers efficacy screening. The final part of the work demonstrated that the reduction of disease susceptibility observed in plants treated with prohexadione-calcium is mainly due to the accumulation of a novel phytoalexins: luteoforol. This 3-deoxyflavonoid was proven to have a strong antimicrobial activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At ecosystem level soil respiration (Rs) represents the largest carbon (C) flux after gross primary productivity, being mainly generated by root respiration (autotrophic respiration, Ra) and soil microbial respiration (heterotrophic respiration, Rh). In the case of terrestrial ecosystems, soils contain the largest C-pool, storing twice the amount of C contained in plant biomass. Soil organic matter (SOM), representing the main C storage in soil, is decomposed by soil microbial community. This process produces CO2 which is mainly released as Rh. It is thus relevant to understand how microbial activity is influenced by environmental factors like soil temperature, soil moisture and nutrient availability, since part of the CO2 produced by Rh, directly increases atmospheric CO2 concentration and therefore affects the phenomenon of climate change. Among terrestrial ecosystems, agricultural fields have traditionally been considered as sources of atmospheric CO2. In agricultural ecosystems, in particular apple orchards, I identified the role of root density, soil temperature, soil moisture and nitrogen (N) availability on Rs and on its two components, Ra and Rh. To do so I applied different techniques to separate Rs in its two components, the ”regression technique” and the “trenching technique”. I also studied the response of Ra to different levels of N availability, distributed either in a uniform or localized way, in the case of Populus tremuloides trees. The results showed that Rs is mainly driven by soil temperature, to which it is positively correlated, that high levels of soil moisture have inhibiting effects, and that N has a negligible influence on total Rs, as well as on Ra. Further I found a negative response of Rh to high N availability, suggesting that microbial decomposition processes in the soil are inhibited by the presence of N. The contribution of Ra to Rs was of 37% on average.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis analyses the effects of the enrichment of the soil with fertilizer and sea level rise (SLR) on salt marsh vegetation. We simulated different conditions of the salt marshes under current and projected sea level rise. These habitats are colonised by various types of plants, we focused on species belonging to the genus Spartina. This plant seems to be particularly sensitive to eutrophication due to human activities, as experiments have documented a loss of habitat associated with altered nutrient conditions. We manipulated experimentally the types of sediment, the concentration of nutrients and sea level rise. We wanted to test whether eutrophication can affect the aboveground/belowground growth of the vegetation, and indirectly the erosion of the sediment, with potentially interacting effects with soil type and SLR in affecting the loss of the habitats and species. The study lasted from July to October. The data were analysed using Permanova. The results showed that the plants were placed in growth spiked sediment different from those raised in the untreated sediment. Furthermore, the sediment underwent a level of erosion differently depending on the growth of plants and the condition they were in the pots, current or future sea levers. These results suggest that the total salt marsh habitat is very sensitive to changes caused by human activities, and that excessive eutrophication, combined with SLR will likely facilitate further loss of salt marsh vegetation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In spite of the higher toxicity of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) than of their parent-PAHs, there are only a few studies of the concentrations, composition pattern, sources and fate of OPAHs in soil, the presumably major environmental sink of OPAHs. This is related to the fact that there are only few available methods to measure OPAHs together with PAHs in soil. rnThe objectives of my thesis were to (i) develop a GC/MS-based method to measure OPAHs and their parent-PAHs in soils of different properties and pollution levels, (ii) apply the method to soils from Uzbekistan and Slovakia and (iii) investigate into the fate of OPAHs, particularly their vertical transport in soilrnI optimized and fully evaluated an analytical method based on pressurized liquid extraction, silica gel column chromatographic fractionation of extracted compounds into alkyl-/parent-PAH and OPAH fractions, silylation of hydroxyl-/carboxyl-OPAHs with N,O-bis(trimethylsilyl)trifluoracetamide and GC/MS quantification of the target compounds. The method was targeted at 34 alkyl-/parent-PAHs, 7 carbonyl-OPAHs and 19 hydroxyl-/carboxyl-OPAHs. I applied the method to 11 soils from each of the Angren industrial region (which hosts a coal mine, power plant, rubber factory and gold refinery) in Uzbekistan and in the city of Bratislava, the densely populated capital of Slovakia.rnRecoveries of five carbonyl-OPAHs in spike experiments ranged between 78-97% (relative standard deviation, RSD, 5-12%), while 1,2-acenaphthenequinone and 1,4-naphtho-quinone had recoveries between 34-44%% (RSD, 19-28%). Five spiked hydroxyl-/carboxyl-OPAHs showed recoveries between 36-70% (RSD, 13-46%), while others showed recoveries &amp;amp;lt;10% or were completely lost. With the optimized method, I determined, on average, 103% of the alkyl-/parent-PAH concentrations in a certified reference material.rnThe ∑OPAHs concentrations in surface soil ranged 62-2692 ng g-1 and those of ∑alkyl-/parent-PAHs was 842-244870 ng g-1. The carbonyl-OPAHs had higher concentrations than the hydroxyl-/carboxyl-OPAHs. The most abundant carbonyl-OPAHs were consistently 9-fluorenone (9-FLO), 9,10-anthraquinone (9,10-ANQ), 1-indanone (1-INDA) and benzo[a]anthracene-7,12-dione (7,12-B(A)A) and the most abundant hydroxyl-/carboxyl-OPAH was 2-hydroxybenzaldehyde. The concentrations of carbonyl-OPAHs were frequently higher than those of their parent-PAHs (e.g., 9-FLO/fluorene &amp;amp;gt;100 near a rubber factory in Angren). The concentrations of OPAHs like those of their alkyl-/parent-PAHs were higher at locations closer to point sources and the OPAH and PAH concentrations were correlated suggesting that both compound classes originated from the same sources. Only for 1-INDA and 2-biphenylcarboxaldehyde sources other than combustion seemed to dominate. Like those of the alkyl-/parent-PAHs, OPAH concentrations were higher in topsoils than subsoils. Evidence of higher mobility of OPAHs than their parent-PAHs was provided by greater subsoil:topsoil concentration ratios of carbonyl-OPAHs (0.41-0.82) than their parent-PAHs (0.41-0.63) in Uzbekistan. This was further backed by the consistently higher contribution of more soluble 9-FLO and 1-INDA to the ∑carbonyl-OPAHs in subsoil than topsoil at the expense of 9,10-ANQ, 7,12-B(A)A and higher OPAH/parent-PAH concentration ratios in subsoil than topsoil in Bratislava.rnWith this thesis, I contribute a suitable method to determine a large number of OPAHs and PAHs in soil. My results demonstrate that carbonyl-OPAHs are more abundant than hydroxyl-/carboxyl-OPAHs and OPAH concentrations are frequently higher than parent-PAH concentrations. Furthermore, there are indications that OPAHs are more mobile in soil than PAHs. This calls for appropriate legal regulation of OPAH concentrations in soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selen ist in geringen Mengen ein essentielles Nährelement, das aber in höheren Gehalten toxisch wird. Der Se-Kreislauf in der Umwelt ist eng mit Redoxreaktionen wie der Reduktion von Se-Oxyanionen zu Methylselenid verknüpft. Flüchtige Methylselenide sind weit verbreitet und stellen einen wichtigen Se-Fluss in der Umwelt dar. Das übergeordnete Ziel meiner Dissertation war, die Stabilisotopenfraktionierung von Se durch Biomethylierung verschiedener oxidierter Se-Spezies (Se[IV] und Se[VI]) im Boden aufzuklären. Zunächst wurde eine Methode entwickelt, die es erlaubte flüchte Methylselenide quantitativ zurückzuhalten. Es zeigte sich, dass alkalische Peroxid-Lösung dafür geeignet war. Mit alkalischer Peroxid-Lösung wurde eine Wiederfindung von 95,6 ± Standardabweichung 5,4% in Verflüchtigungsexperimenten mit Methylselenid-Standards erreicht. Bei Einsatz von alkalischer Peroxid-Lösung in geschlossenen Mikrokosmos-Experimenten kam es zu keinen Se-Verlusten und ausgeglichenen Se-Isotopenbilanzen. Die massengewichteten δ82/76Se-Werte lagen für Se(IV) und Se(VI) am Ende der Mikrokosmos-Inkubationen bei -0,31 ± 0,05‰ (n = 3) und -0,76 ± 0,07‰ (n = 3) verglichen mit -0,20 ± 0,05‰ und -0,69 ± 0,07‰ im jeweils zugegebenen Se. Im zweiten Teil meiner Dissertation wurde die Pilzart Alternaria alternata mit Se(VI) und Se(IV) in geschlossenen Mikrokosmen für 11-15 und Se(IV) zusätzlich für 3-5 Tage bei 30°C inkubiert. In 11-15 Tagen wurden 2,9-11% des Se(VI) und 21-29% des Se(IV) und in 3-5 Tagen, 3-5% des Se(IV) methyliert. Die anfänglichen δ82/76Se-Werte von Se(VI) und Se(IV) lagen bei -0,69 ± 0,07‰, und -0,20 ± 0,05‰. Die δ82/76Se-Werte der Methylselenide unterschieden sich nach 11-15 Tagen Inkubation signifikant zwischen Se(VI) (-3,97 bis -3,25 ‰) und Se(IV) (-1,44 bis -0,16‰) als Quellen. Die δ82/76Se-Werte der Methylselenide zeigen also die Quellen der Biomethylierung von Se an. Die kürzere Inkubation von Se(IV) für 3-5 Tage führte zu einer ausgeprägten Se-Isotopenfraktonierung von mindestens -6‰, bevor ein Fließgleichgewicht erreicht wurde. Im dritten Teil bestimmte ich die Bindungsformen von Se mit drei operativ definierten sequentiellen Extraktionen und die δ82/76S-Werte des gesamten Selens in zehn urbanen Oberböden mit 0,09-0,52 mg/kg Se, die fünf verschiedene Landnutzungstypen repräsentierten (Überschwemmungsgrünland, Garten, Park, Straßenrand und Wald). Nur ein kleiner Teil des Seleniums lag in austauschbarer und damit direkt bioverfügbarer und in residualer, wenig reaktiver Form vor. Das meiste Se war an die organische Substanz und Fe-(Hydr-)Oxide gebunden (42-77% des gesamten Selens). Der mittlere δ82/76Se-Wert des gesamten Selens in den Oberböden lag mit -0,03 ± 0,38‰ nahe beim Mittelwert der gesamten Erde. Geringfügig niedrigere Se-Isotopensignale von -0,59 bis -0,35‰ v.a. in Waldböden und geringfügig höhere von 0,26 to 0,45‰ in Überschwemmungsgrünland wurden vermutlich durch Boden-Pflanze-Recycling und Se-Kontaminationen durch das Flusswasser verursacht. Der vierte Teil umfasste ein “Natural Attenuation”-Experiment und Mikrokosmos-Inkubationen von Bodenproben mit A. alternata. Die Equilibrierung von zum Boden gegebenem Se(IV) und Se(VI) für drei Tage führte zu abnehmenden wasserlöslichen Se-Gehalten um 32-44% bzw. 8-14, die mit kleinen Isotopenfraktionierung (ε = -0,045 bis -0,12 ‰ and -0,05 to -0,07‰ verbunden waren. In zwei der inkubierten Böden mit mäßig sauren pH-Werten wurden zwischen 9,1 und 30% des zugefügten Se(IV) und 1,7% des zugefügten Se(VI) methyliert während in einem stark sauren Boden keine Methylierung auftrat. Das aus Se(IV) entstandene Methylselenid war deutlich gegenüber dem zugegebenen Se-Standard (0,20‰) an 82Se verarmt (δ82/76Se = -3,3 bis -4,5‰). Meine Ergebnisse zeigen, dass die stabilen Isotopenverhältnisse von Se neue Einblicke in Se-Transformationsprozesse erlauben.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays we live in densely populated regions and this leads to many environmental issues. Among all pollutants that human activities originate, metals are relevant because they can be potentially toxic for most of living beings. We studied the fate of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in a vineyard environment analysing samples of plant, wine and soil. Sites were chosen considering the type of wine produced, the type of cultivation (both organic and conventional agriculture) and the geographic location. We took vineyards that cultivate the same grape variety, the Trebbiano). We investigated 5 vineyards located in the Ravenna district (Italy): two on the Lamone Valley slopes, one in the area of river-bank deposits near Ravenna city, then a farm near Lugo and one near Bagnacavallo in interfluve regions. We carried out a very detailed characterization of soils in the sites, including the analysis of: pH, electric conductivity, texture, total carbonate and extimated content of dolomite, active carbonate, iron from ammonium oxalate, Iron Deficiency Chlorosis Index (IDCI), total nitrogen and organic carbon, available phosphorous, available potassium and Cation Exchange Capacity (CEC). Then we made the analysis of the bulk chemical composition and a DTPA extraction to determine the available fraction of elements in soils. All the sites have proper ground to cultivate, with already a good amount of nutrients, such as not needing strong fertilisations, but a vineyard on hills suffers from iron deficiency chlorosis due to the high level of active carbonate. We found some soils with much silica and little calcium oxide that confirm the marly sandstone substratum, while other soils have more calcium oxide and more aluminium oxide that confirm the argillaceous marlstone substratum. We found some critical situations, such as high concentrations of Chromium, especially in the farm near Lugo, and we noticed differences between organic vineyards and conventional ones: the conventional ones have a higher enrichment in soils of some metals (Copper and Zinc). Each metal accumulates differently in every single part of grapevines. We found differences between hill plants and lowland ones: behaviors of plants in metal accumulations seems to have patterns. Metals are more abundant in barks, then in leaves or sometimes in roots. Plants seem trying to remove excesses of metal storing them in bark. Two wines have excess of acetic acid and one conventional farm produces wine with content of Zinc over the Italian law limit. We already found evidence of high values relating them with uncontaminated environments, but more investigations are suggested to link those values to their anthropogenic supplies.