995 resultados para Physiology, Comparative.
Resumo:
Microcystins isolated from toxic cyanobacteria are potent inhibitors of protein phosphatases 1 and 2A (PP1 and PP2A). The inhibitory effects of three structural variants of microcystins (microcystin-LR, -YR, and -RR) on protein phosphatases isolated and purified from the liver and kidney of grass carp (Ctenopharyngodon idellus) were investigated using the P-32 radiometric assay. The relationships between percentage inhibition of protein phosphatase activity and microcystin levels followed a typical dose-dependent sigmoid curve. These results were compared to those obtained from mouse PP2A. The degree and pattern of inhibition of both fish and mouse protein phosphatases by microcystins were similar. Protein phosphatases in crude fish tissue homogenates showed similar inhibition patterns as purified fish PP2A toward microcystins. (C) 2000 by John Wiley & Sons, Inc.
Resumo:
Ecological studies on benthic nematodes were conducted in two small, shallow lakes in the middle Yangtze basin, China; Lake Houhu, where the main source of primary production is phytoplankton and Lake Biandantang where it is predominantly macrophytic in origin. Monthly sampling was carried out from April 1996 to March 1997. A total of 36 species of nematodes was found in Lake Houhu and 51 species in Lake Biandantang. The dominant trophic groups of nematodes were algophages in Lake Houhu and bacteriophages associated with omniphages and phytophages in Lake Biandantang. Community analyses based on K-dominance curves, Shannon-Wiener and Simpson diversity indices, demonstrate that the benthic nematodes are more diverse in Lake Biandantang than in Lake Houhu. The results suggest that the abundance of submerged vegetation is essential for maintenance of habitat heterogeneity and biodiversity of nematodes in shallow lakes.
Resumo:
The spindle behavior and MPF activity changes in the progression of oocyte maturation were investigated and compared with cytological observation and kinase assay between gynogenetic silver crucian carp and amphimictic colored crucian carp. MPF activity was measured by using histone I-Il as phosphorylation substrate. There were two similar oscillatory MPF kinase activity changes during oocyte maturation in two kinds of fishes with different reproductive modes, but there existed some subtle difference between them. The subtle difference was that the first peak of MPF kinase activity was kept to a longer-lasting time in the gynogenetic silver crucian carp than in the amphimictic colored crucian carp. It was suggested that the difference may be related to the spindle behavior changes, such as tripolar spindle formation and spindle rearrangement in the gynogenetic crucian carp.
Resumo:
Extraction experiments with spiking of C-13(12)-PCDD/Fs were performed with a variety of PCDD/Fs contaminated samples. The extraction recovery of PCDD/Fs was mainly influenced by PCDD/Fs concentration and the sample matrix. Generally, the first soxhlet extraction with toluene has suitable recovery. From the selected samples, only FAMS4 and 5 which are fly ashes with high concentration, the recovery of the first soxhlet extraction with 24 hr. is low, but PCDD/Fs were almost completely removed after 72 hr. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
A comparative study of the steady-state and transient optical properties was made between InGaAs/GaAs quantum do chains (QDCs) and quantum dots (QDs). It was found that the photoluminescence (PL) decay time of QDCs exhibited a strong photon energy dependence, while it was less sensitive in QDs. The PL decay time increased much faster with the excitation power in the QDCs than that in QDs. When the excitation power was large enough, the PL decay time tended to be saturated. In addition, it was also found that the PL rise time was much shorter in QDCs than in QDs. All these experimental results show that there is a strong carrier coupling along the chain direction in the QD chain structure. The polarization PL measurements further confirm the carrier transfer process along the chain direction.
Resumo:
We present a comparative study of InAs quantum dots grown on Si-doped GaAs (10 0) substrates, Si-doped GaAs (10 0) vicinal substrates, and semi-insulating GaAs (10 0) substrates. The density and size distribution of quantum dots varied greatly with the different substrates used. While dots on exact substrates showed only one dominant size, a clear bimodal size distribution of the InAs quantum dots was observed on GaAs vicinal substrates, which is attributed to the reduced surface diffusion due to the presence of multiatomic steps. The emission wavelength is blueshifted during the growth of GaAs cap layer with a significant narrowing of FWHM. We found that the blueshift is smaller for QDs grown on GaAs (10 0) vicinal substrates than that for dots on exact GaAs (100) substrates. This is attributed to the energy barrier formed at the multiatomic step kinks which prohibits the migration of In adatoms during the early stage of cap layer growth. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
By comparing the results of some well-controlled calculation methods, we analyze the relative importance of bulk band structure, multi-bulk-band coupling, and boundary conditions in determining colloidal quantum dot conduction band eigenenergies. We find that while the bulk band structure and correct boundary conditions are important, the effects of multi-bulk-band coupling are small.
Resumo:
Linewidth broadening of exciton luminescence in wurtzite and zinc-blende GaN epilayers was investigated as a function of temperature with photoluminescence. A widely accepted theoretical model was used to fit the experimental data, so that the coupling parameters between exciton and acoustic and longitudinal optical phonons were obtained for both structures. It was found that the coupling constants of both exciton-acoustic optical phonon coupling and exciton-longitudinal optical phonon coupling for zinc-blende GaN are almost twice as much as the corresponding values of wurtzite GaN. These results show that the relatively strong exciton-phonon scattering seems to be characteristic to zinc-blende GaN film. (C) 2002 American Institute of Physics.
Resumo:
The room-temperature Raman scattering studies of longitudinal optic phonons in AlAs/AlxGa1-xAs and GaAs/AlxGa1-xAs short-period superlattices with different layer thicknesses were reported. The AlAs LO modes confined in AlAs layers and GaAs-like LO modes confined in AlxGa1-xAs layers were observed in AlAs/AlxGa1-xAs superlattices under off-resonance conditions. And the GaAs LO modes confined in GaAs layers and AlAs-like LO modes confined in AlxGa1-xAs layers were observed in GaAs/AlxGa1-xAs superlattices. In addition, the AlAs interface mode in AlAs/AlxGa1-xAs was also observed under near-resonance conditions. Based on the linear chain mode, the frequencies of confined LO modes measured by Raman scattering were unfolded according to q=m/(n+1)(2 pi/a(0)) by which the dispersion curves of AlAs-like and GaAs-like LO phonons in AlxGa1-xAs mixed crystal were obtained.
Resumo:
Nanocrystalline Ge:H thin films were deposited simultaneously on both electrodes of a conventional capacitively coupled reactor for plasma enhanced chemical vapor deposition using highly H-2 diluted GeH4 as the source gas. The structure of the films was investigated by Raman scattering and X-ray diffraction as a function of substrate temperature, H-2 dilution, and r.f. power. The hydrogen concentrations and bonding configurations were determined by infrared absorption spectroscopy. For anodic deposition, the preferred crystallographic orientation and film crystallinity depend rather strongly on the deposition parameters. This dependence can be explained by changing surface mobilities of adsorbed precursors due to changes in the hydrogen coverage of the growing surface. Cathodic deposition is much less sensitive to variations in the deposition parameters. It generally results in films of high crystallinity with randomly oriented crystallizes. Some possible mechanisms for these differences between anodic and cathodic deposition are discussed. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.