796 resultados para Pervasive data mining
Resumo:
Geographic knowledge discovery (GKD) is the process of extracting information and knowledge from massive georeferenced databases. Usually the process is accomplished by two different systems, the Geographic Information Systems (GIS) and the data mining engines. However, the development of those systems is a complex task due to it does not follow a systematic, integrated and standard methodology. To overcome these pitfalls, in this paper, we propose a modeling framework that addresses the development of the different parts of a multilayer GKD process. The main advantages of our framework are that: (i) it reduces the design effort, (ii) it improves quality systems obtained, (iii) it is independent of platforms, (iv) it facilitates the use of data mining techniques on geo-referenced data, and finally, (v) it ameliorates the communication between different users.
Resumo:
El campo de procesamiento de lenguaje natural (PLN), ha tenido un gran crecimiento en los últimos años; sus áreas de investigación incluyen: recuperación y extracción de información, minería de datos, traducción automática, sistemas de búsquedas de respuestas, generación de resúmenes automáticos, análisis de sentimientos, entre otras. En este artículo se presentan conceptos y algunas herramientas con el fin de contribuir al entendimiento del procesamiento de texto con técnicas de PLN, con el propósito de extraer información relevante que pueda ser usada en un gran rango de aplicaciones. Se pueden desarrollar clasificadores automáticos que permitan categorizar documentos y recomendar etiquetas; estos clasificadores deben ser independientes de la plataforma, fácilmente personalizables para poder ser integrados en diferentes proyectos y que sean capaces de aprender a partir de ejemplos. En el presente artículo se introducen estos algoritmos de clasificación, se analizan algunas herramientas de código abierto disponibles actualmente para llevar a cabo estas tareas y se comparan diversas implementaciones utilizando la métrica F en la evaluación de los clasificadores.
Resumo:
Este artículo presenta la aplicación y resultados obtenidos de la investigación en técnicas de procesamiento de lenguaje natural y tecnología semántica en Brand Rain y Anpro21. Se exponen todos los proyectos relacionados con las temáticas antes mencionadas y se presenta la aplicación y ventajas de la transferencia de la investigación y nuevas tecnologías desarrolladas a la herramienta de monitorización y cálculo de reputación Brand Rain.
Resumo:
Comunicación presentada en CoSECiVi 2014, I Congreso de la Sociedad Española para las Ciencias del Videojuego, Barcelona, 24 de junio de 2014.
Resumo:
La incorporación del EEES provocó una infinidad de desafíos y retos a las Universidades que a día de hoy aún están siendo solucionados. Además, ha conllevado nuevas oportunidades para la formación de estudiantes pero también para las Universidades. Entre ellas, la formación interuniversitaria entre estados miembro de la UE. El EEES permite unificar a través del sistema ECTS la carga de trabajo de los estudiantes facilitando la propuesta de planes de estudios interuniversitarios. Sin embargo, surgen desafíos a la hora de llevarlos a la práctica. Independientemente de los retos en la propuesta de los planes de estudio, es necesario implementar procesos de enseñanza-aprendizaje que salven la distancia en el espacio físico entre el alumnado y el profesorado. En este artículo se presenta la experiencia docente de la asignatura e-home del Máster Machine Learning and Data Mining de la Universidad de Alicante y la Universidad Jean Monnet (Francia). En este caso, se combina la formación en aula presencial con formación en aula virtual a través de videoconferencia. La evaluación del método de enseñanza-aprendizaje propuesto utiliza la propia experiencia docente y encuestas realizadas a los alumnos para poner de manifiesto la ruptura de barreras espaciales y un éxito a nivel docente.
Resumo:
Introducción al análisis con Clustering
Resumo:
Análisis multivariante con MDS
Resumo:
Análisis multivariante de Componentes Principales (PCA)
Resumo:
Análisis multivariante con técnicas de Permutaciones y MANOVA (Permanova)
Resumo:
Tema 6. Text Mining con Topic Modeling.
Resumo:
Este trabajo analiza las nuevas tendencias en la creación y gestión de información geográfica, para la elaboración de modelos inductivos basados exclusivamente en bases de datos geográficas. Estos modelos permiten integrar grandes volúmenes de datos de características heterogéneas, lo que supone una gran complejidad técnica y metodológica. Se propone una metodología que permite conocer detalladamente la distribución de los recursos hídricos naturales en un territorio y derivar numerosas capas de información que puedan ser incorporadas a estos modelos «ávidos de datos» (data-hungry). La zona de estudio escogida para aplicar esta metodología es la comarca de la Marina Baja (Alicante), para la que se presenta un cálculo del balance hídrico espacial mediante el uso de herramientas estadísticas, geoestadísticas y Sistemas de Información Geográfica. Finalmente, todas las capas de información generadas (84) han sido validadas y se ha comprobado que su creación admite un cierto grado de automatización que permitirá incorporarlas en análisis de Minería de Datos más amplios.
Resumo:
Tese de mestrado, Bioinformática e Biologia Computacional (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2016
Resumo:
As plataformas de e-Learning são cada vez mais utilizadas na educação à distância, facto que se encontra diretamente relacionado com a possibilidade de proporcionarem aos seus alunos a valência de poderem assistir a cursos em qualquer lugar. Dentro do âmbito das plataformas de e-Learning encontra-se um grupo especialmente interessante: as plataformas adaptativas, que tendem a substituir o professor (presencial) através de interatividade, variabilidade de conteúdos, automatização e capacidade para resolução de problemas e simulação de comportamentos educacionais. O projeto ADAPT (plataforma adaptativa de e-Learning) consiste na criação de uma destas plataformas, implementando tutoria inteligente, resolução de problemas com base em experiências passadas, algoritmos genéticos e link-mining. É na área de link-mining que surge o desenvolvimento desta dissertação que documenta o desenvolvimento de quatro módulos distintos: O primeiro módulo consiste num motor de busca para sugestão de conteúdos alternativos; o segundo módulo consiste na identificação de mudanças de estilo de aprendizagem; o terceiro módulo consiste numa plataforma de análise de dados que implementa várias técnicas de data mining e estatística para fornecer aos professores/tutores informações importantes que não seriam visíveis sem recurso a este tipo de técnicas; por fim, o último módulo consiste num sistema de recomendações que sugere aos alunos os artigos mais adequados com base nas consultas de alunos com perfis semelhantes. Esta tese documenta o desenvolvimento dos vários protótipos para cada um destes módulos. Os testes efetuados para cada módulo mostram que as metodologias utilizadas são válidas e viáveis.
Resumo:
Mode of access: Internet.