962 resultados para Partial cation exchange
Resumo:
We consider a scheduler for the downlink of a wireless channel when only partial channel-state information is available at the scheduler. We characterize the network stability region and provide two throughput-optimal scheduling policies. We also derive a deterministic bound on the mean packet delay in the network. Finally, we provide a throughput-optimal policy for the network under QoS constraints when real-time and rate-guaranteed data traffic may be present.
Resumo:
There is a strong relation between sparse signal recovery and error control coding. It is known that burst errors are block sparse in nature. So, here we attempt to solve burst error correction problem using block sparse signal recovery methods. We construct partial Fourier based encoding and decoding matrices using results on difference sets. These constructions offer guaranteed and efficient error correction when used in conjunction with reconstruction algorithms which exploit block sparsity.
Resumo:
The First Order Reversal Curve (FORC) method has been utilised to understand the magnetization reversal and the extent of the irreversible magnetization of the soft CoFe2O4-hard SrFe12O19 nanocomposite in the nonexchange spring and the exchange spring regime. The single peak switching behaviour in the FORC distribution of the exchange spring composite confirms the coherent reversal of the soft and hard phases. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the FORC measurements. (C) 2013 AIP Publishing LLC.
Resumo:
Experimental study of a small partial admission axial turbine with low aspect ratio blade has been done. Tests were also performed with full admission stator replacing the partial one for the same rotor to assess the losses occurring due to partial admission. Further tests were conducted with stator admission area split into two and three sectors to study the effects of multiple admission sectors. The method of Ainley and Mathieson with suitable correction for aspect ratio in secondary losses, as proposed by Kacker and Okapuu, gives a good estimate of the efficiency. Estimates of partial admission losses are made and compared with experimentally observed values. The Suter and Traupel correlations for partial admission losses yielded reasonably accurate estimates of efficiency even for small turbines though limited to the region of design u/c(is). Stenning's original concept of expansion losses in a single sector is extended to include multiple sectors of opening. The computed efficiency debit due to each additional sector opened is compared with test values. The agreement is observed to be good. This verified Stenning's original concept of expansion losses. When the expression developed on this extended concept is modified by a correction factor, the prediction of partial admission efficiencies is nearly as good as that of Suter and Traupel. Further, performance benefits accrue if the turbine is configured with increased aspect ratio at the expense of reduced partial admission.
Resumo:
We consider a discrete time partially observable zero-sum stochastic game with average payoff criterion. We study the game using an equivalent completely observable game. We show that the game has a value and also we present a pair of optimal strategies for both the players.
Resumo:
Synthesis and characterization of cis, trans-RuH(eta(2)-H-2)(PPh3)(2)(N-N)]OTf] (N-N = 2,2'-bipyridyl (bpy) 1a, 2,2'-bipyrimidine (bpm) 2a; OTf = trifluoromethane sulfonate (CF3SO3)) complexes are reported. The cis-H-2/hydride ligands are involved in H-atom site exchange between the two moieties. This dynamics was investigated by variable temperature NMR spectral studies based on which the mechanism of the exchange process was deduced. The Delta G(#) for the exchange of H-atoms between the eta(2)-H-2 and hydride ligands was determined to be around 8 and 13 kJ mol(-1), respectively, for 1a and 2a. The H-H distances (d(HH), A) in complexes 1a and 2a have been calculated from the T-1(minimum) and (1)J(H, D) and are found to be 1.07 A (slow) and 0.95 A for 1a and 1.04 A (slow) and 0.94 A for 2a, respectively. The molecular structure of 1a was determined by X-ray crystallography.
Resumo:
A new partial integrated guidance and control design approach is proposed in this paper, which combines the benefits of both integrated guidance and control as well as the conventional guidance and control design philosophies. The proposed technique essentially operates in a two-loop structure. In the outer loop, an optimal guidance problem is formulated considering the nonlinear six degrees-of-freedom equation of motion of the interceptor. From this loop, the required pitch and yaw rates are generated by solving a nonlinear suboptimal guidance formulation in a computationally efficient manner while simultaneously assuring roll stabilization. Next, the inner loop tracks these outer loop body rate commands. This manipulation of the six degrees-of-freedom dynamics in both loops preserves the inherent time scale separation property between the translational and rotational dynamics, while retaining the philosophy of integrated guidance and control design as well. Because of this, the tuning process is quite straightforward and nontedious as well. Extensive six degrees-of-freedom simulations studies have been carried out, considering three-dimensional engagement geometry, to demonstrate the effectiveness of the proposed new design approach engaging high-speed ballistic targets. A variety of comparison studies have also been carried out to demonstrate the effectiveness of the proposed approach.
Resumo:
Nanosized fullerene solvates have attracted widespread research attention due to recent interesting discoveries. A particular type of solvate is limited to a fixed number of solvents and designing new solvates within the same family is a fundamental challenge. Here we demonstrate that the hexagonal closed packed (HCP) phase of C-60 solvates, formed with m-xylene, can also be stabilized using toluene. Contrary to the notion on their instability, these can be stabilized from minutes up to months by tuning the occupancy of solvent molecules. Due to high stability, we could record their absorption edge, and measure excitonic life-time, which has not been reported for any C-60 solvate. Despite being solid, absorbance spectrum of the solvates is similar in appearance to that of C-60 in solution. A new absorption band appears at 673 nm. The fluorescence lifetime at 760 nm is similar to 1.2 ns, suggesting an excited state unaffected by solvent-C-60 interaction. Finally, we utilized the unstable set of HCP solvates to exchange with a second solvent by a topotactic exchange mechanism, which rendered near permanent stability to the otherwise few minutes stable solvates. This is also the first example of topotactic exchange in supramolecular crystal, which is widely known in ionic solids. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Three possible contact conditions may prevail at a contact interface depending on the magnitude of normal and tangential loads, that is, stick condition, partial slip condition or gross sliding condition. Numerical techniques have been used to evaluate the stress field under partial slip and gross sliding condition. Cattaneo and Mindlin approach has been adapted to model partial slip condition. Shear strain energy density and normalized strain energy release rate have been evaluated at the surface and in the subsurface region. It is apparent from the present study that the shear strain energy density gives a fair prediction for the nucleation of damage, whereas the propagation of the crack is controlled by normalized strain energy release rate. Further, it has been observed that the intensity of damage strongly depends on coefficient of friction and contact conditions prevailing at the contact interface. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The solvothermal reaction of CoCl(2)4H(2)O and 4,4-sulfonyldibenzoic acid (H(2)SDBA) resulted in the formation of a three-dimensional coordination polymer Co-3(C14H8O6S)(3)(DMA)(2)(MeOH)].DMA (Ia) consisting of trinuclear Co-3 oxo-cluster units. The Co-3 trimeric units are connected by SDBA(2-) anions leading to a three dimensional structure with a pcu topology. The terminal methanol molecules could be exchanged in a single crystal to single crystal (SCSC) fashion by other similar solvent molecules (ethanol, acetonitrile, water, ethyleneglycol). Magnetic studies on the parent compound, Ia, indicate antiferromagnetic interactions between the central metal atoms.
Resumo:
Recently, it was found that the ferromagnetic SrRuO3 when combined with another ferromagnet in thin film form gives rise to exchange bias (EB) effect. However, we observed EB in single, strained, SrRuO3 thin films grown on diamagnetic LaAlO3 (100) substrates. It displays the training effect, which essentially confirms EB. The temperature dependence of the EB reveals the blocking temperature to be around similar to 75 K. The strength of the exchange bias decreases with the increase in thickness of the film. We observe tensile strain in the out of plane direction. Further, the presence of in-plane compressive strain is observed through asymmetric reciprocal space mapping. Finally, we find a direct link between strain and EB. The evolution of strain with thickness matches well with the nature of scaled EB. It has been shown earlier by first principle calculations that this strain can induce EB in thin films. (C) 2014 AIP Publishing LLC.
Resumo:
Using the dynamic inversion philosophy, a nonlinear partial integrated guidance and control approach is presented in this paper for formation flying. It is based on the evolving philosophy of integrated guidance and control. However, it also retains the advantages of the conventional guidance then control philosophy by retaining the timescale separation between translational and rotational dynamics explicitly. Simulation studies demonstrate that the proposed technique is effective in bringing the vehicles into formation quickly and maintaining the formation.
Resumo:
Frequent episode discovery is one of the methods used for temporal pattern discovery in sequential data. An episode is a partially ordered set of nodes with each node associated with an event type. For more than a decade, algorithms existed for episode discovery only when the associated partial order is total (serial episode) or trivial (parallel episode). Recently, the literature has seen algorithms for discovering episodes with general partial orders. In frequent pattern mining, the threshold beyond which a pattern is inferred to be interesting is typically user-defined and arbitrary. One way of addressing this issue in the pattern mining literature has been based on the framework of statistical hypothesis testing. This paper presents a method of assessing statistical significance of episode patterns with general partial orders. A method is proposed to calculate thresholds, on the non-overlapped frequency, beyond which an episode pattern would be inferred to be statistically significant. The method is first explained for the case of injective episodes with general partial orders. An injective episode is one where event-types are not allowed to repeat. Later it is pointed out how the method can be extended to the class of all episodes. The significance threshold calculations for general partial order episodes proposed here also generalize the existing significance results for serial episodes. Through simulations studies, the usefulness of these statistical thresholds in pruning uninteresting patterns is illustrated. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
A generalized explanation is provided for the existence of the red-and blue-shifting nature of X-Z bonds (Z = H, halogens, chalcogens, pnicogens, etc.) in X-Z center dot center dot center dot Y complexes based on computational studies on a selected set of weakly bonded complexes and analysis of existing literature data. The additional electrons and orbitals available on Z in comparison to H make for dramatic differences between the H-bond and the rest of the Z-bonds. The nature of the X-group and its influence on the X-Z bond length in the parent X-Z molecule largely controls the change in the X-Z bond length on X-Z center dot center dot center dot Y bond formation; the Y-group usually influences only the magnitude of the effects controlled by X. The major factors which control the X-Z bond length change are: (a) negative hyperconjugative donation of electron density from X-group to X-Z sigma* antibonding molecular orbital (ABMO) in the parent X-Z, (b) induced negative hyperconjugation from the lone pair of electrons on Z to the antibonding orbitals of the X-group, and (c) charge transfer (CT) from the Y-group to the X-Z sigma* orbital. The exchange repulsion from the Y-group that shifts partial electron density at the X-Z sigma* ABMO back to X leads to blue-shifting and the CT from the Y-group to the sigma* ABMO of X-Z leads to red-shifting. The balance between these two opposing forces decides red-, zero- or blue-shifting. A continuum of behaviour of X-Z bond length variation is inevitable in X-Z center dot center dot center dot Y complexes.
Resumo:
We consider a server serving a time-slotted queued system of multiple packet-based flows, where not more than one flow can be serviced in a single time slot. The flows have exogenous packet arrivals and time-varying service rates. At each time, the server can observe instantaneous service rates for only a subset of flows ( selected from a fixed collection of observable subsets) before scheduling a flow in the subset for service. We are interested in queue length aware scheduling to keep the queues short. The limited availability of instantaneous service rate information requires the scheduler to make a careful choice of which subset of service rates to sample. We develop scheduling algorithms that use only partial service rate information from subsets of channels, and that minimize the likelihood of queue overflow in the system. Specifically, we present a new joint subset-sampling and scheduling algorithm called Max-Exp that uses only the current queue lengths to pick a subset of flows, and subsequently schedules a flow using the Exponential rule. When the collection of observable subsets is disjoint, we show that Max-Exp achieves the best exponential decay rate, among all scheduling algorithms that base their decision on the current ( or any finite past history of) system state, of the tail of the longest queue. To accomplish this, we employ novel analytical techniques for studying the performance of scheduling algorithms using partial state, which may be of independent interest. These include new sample-path large deviations results for processes obtained by non-random, predictable sampling of sequences of independent and identically distributed random variables. A consequence of these results is that scheduling with partial state information yields a rate function significantly different from scheduling with full channel information. In the special case when the observable subsets are singleton flows, i.e., when there is effectively no a priori channel state information, Max-Exp reduces to simply serving the flow with the longest queue; thus, our results show that to always serve the longest queue in the absence of any channel state information is large deviations optimal.