985 resultados para Parasitized Hosts
Resumo:
Medical mycology has greatly benefited from the introduction of molecular techniques. New knowledge on molecular genetics has provided both theoretical and practical frameworks, permitting important advances in our understanding of several aspects of pathogenic fungi. Considering Paracoccidioides brasiliensis in particular, important eco-epidemiological aspects, such as environmental distribution and new hosts were clarified through molecular approaches. These methodologies also contributed to a better understanding about the genetic variability of this pathogen; thus, P. brasiliensis is now assumed to represent a species complex. The present review focuses on some recent findings about the current taxonomic status of P. brasiliensis, its phylogenetic and speciation processes, as well as on some practical applications for the molecular detection of this pathogen in environmental and clinical materials.
Resumo:
Toscana virus (TOSV) is transmitted by infected sandflies. In Mediterranean countries, TOSV is one of the major viral pathogens involved in aseptic meningitis and meningoencephalitis in humans. It remains unclear if there are animal reservoirs able to maintain the virus through the cold months of the year, when the vector is not circulating. From May to October of 2006 and 2007, we conducted a serosurvey study on domestic animals from Granada province (southern Spain). TOSV was investigated in 1186 serum samples from horses, goats, pigs, cats, dogs, sheep, and cows by serology (indirect fluorescence assay), viral culture, and RT-polymerase chain reaction. Specific anti-TOSV antibodies were detected in 429 (36.2%) serum samples. The highest seropositivity rates were observed in cats (59.6%) and dogs (48.3%). These results suggest that an important percentage of the domestic animals have been infected by TOSV. Significantly different seroprevalence rates were detected in goats among distinct geographical areas. All viral cultures were negative. TOSV was detected by RT-polymerase chain reaction in only one serum sample from a goat. Thus, the studied animals do not seem to act as reservoirs for TOSV; otherwise, they could be amplifying hosts for the virus.
Resumo:
Toxocara cati is a common feline parasite transmitted by the ingestion of embryonated eggs, by the transmammary route or by predation of paratenic hosts harbouring third-stage larvae in their bodies. In the present study, the larval distribution of T. cati in tissues and organs of Rattus norvegicus experimentally infected with 300 embryonated eggs was analysed. Third-stage larvae were recovered from livers, lungs, kidneys, eyes, brains and carcasses of infected rats, following tissue digestion with HCl 0.5% for 24 h at 37°C. Some differences from the known larval distribution of Toxocara canisin the same rodent species were found.
Resumo:
Absonifibula estuarina sp. n. (Diclidophoridae, Absonifibulinae), is described from the gills of juvenile striped weakfish, Cynoscion guatucupa (Cuvier), from the southwestern Atlantic, Argentinean coast. This marine fish migrates to estuarine areas to spawn where exclusively juveniles are found parasitized; adult fish in marine water were never found to be parasitized by this monogenean. A. estuarina sp. n. is characterized mainly by the pedunculate clamps dissimilar in size, the shape of anterior jaw with sclerite 'a' attached to a sub-trapezoidal lamellate extension and fused to sclerites 'c' and 'd'. It differs from Absonifibula bychowskyi Lawler & Overstreet, 1976, the only known species of the genus, in the shape and arrangement of the genital corona, which is armed with six similar hooks disposed in circle and the sub-trapezoidal shape of lamellate extension ('b'). The restriction to juvenile sciaenids is a shared feature among the Absonifibulinae indicating an estuary-dependent life cycle.
Resumo:
Epidemiological studies of malaria or other vector-transmitted diseases often consider vectors as passive actors in the complex life cycle of the parasites, assuming that vector populations are homogeneous and vertebrate hosts are equally susceptible to being infected during their lifetime. However, some studies based on both human and rodent malaria systems found that mosquito vectors preferentially selected infected vertebrate hosts. This subject has been scarcely investigated in avian malaria models and even less in wild animals using natural host-parasite associations. We investigated whether the malaria infection status of wild great tits, Parus major, played a role in host selection by the mosquito vector Culex pipiens. Pairs of infected and uninfected birds were tested in a dual-choice olfactometer to assess their attractiveness to the mosquitoes. Plasmodium-infected birds attracted significantly fewer mosquitoes than the uninfected ones, which suggest that avian malaria parasites alter hosts' odours involved in vector orientation. Reaction time of the mosquitoes, that is, the time taken to select a host, and activation of mosquitoes, defined as the proportion of individuals flying towards one of the hosts, were not affected by the bird's infection status. The importance of these behavioural responses for the vector is discussed in light of recent advances in related or similar model systems.
Resumo:
A study was carried out to determine the distribution and habitat preferences of several species of the genus Biomphalaria. Samples were taken at 350 freshwater locations in Cuba. Three species of Biomphalaria (Biomphalaria havanensis, Biomphalaria helophila and Biomphalaria pallida) were recorded based on their distribution. Of the three species, B. havanensis has the weakest distribution because it was identified in only one locality. The other species, B. helophila and B. pallida, are abundant in rivers and dams and have large populations in Cuba. However, the only species that appears to occur in ecosystems shared with thiarids is B. pallida, possibly due to recent introduction of thiarids, but always in fewer numbers. Here we discuss the possibility of these species to act as intermediary hosts of Schistosoma mansoni in Cuba over the basis of occurrence in natural and anthropic habitats.
Resumo:
A cohort initiated with 121 eggs, yielding 105 first instar nymphs (eclosion rate: 86.78%), allowed us to observe the entire life cycle of Triatoma ryckmani under laboratory conditions (24ºC and 62% relative humidity), by feeding them on anesthetized hamsters. It was possible to obtain 62 adults and the cycle from egg to adult took a mean of 359.69 days with a range of 176-529 days (mortality rate of nymphs: 40.95%). Mean life span of adults was of 81 days for females and 148 days for males. The developmental periods of 4th and 5th nymphs were longer than those of the other instars. This suggests that young siblings have a better chance of taking a hemolymph meal from older ones, in order to survive during fasting periods during prolonged absences of vertebrate hosts from natural ecotopes. The stomach contents of 37 insects showed blood from rodents (15 cases), lizards (7 cases), birds (6 cases) and insect hemolymph (7 cases). Out of 10 insects fed by xenodiagnosis on a Trypanosoma cruzi infected mouse, all but one became infected with the parasite.
Resumo:
Pseudomonas fluorescens CHA0 is a root-associated biocontrol agent that suppresses soil-borne fungal diseases of crops. Remarkably, the pseudomonad is also endowed with systemic and oral activity against pest insects which depends on the production of the insecticidal Fit toxin. The toxin gene (fitD) is part of a virulence cassette encoding three regulators (FitF, FitG, FitH) and a type I secretion system (FitABC-E). Immunoassays with a toxin-specific antibody and transcriptional analyses involving fitG and fitH deletion and overexpression mutants identified LysR family regulator FitG and response regulator FitH as activator and repressor, respectively, of Fit toxin and transporter expression. To visualize and quantify toxin expression in single live cells by fluorescence microscopy, we developed reporters which in lieu of the native toxin protein express a fusion of the Fit toxin with red fluorescent mCherry. In a wild-type background, expression of the mCherry-tagged Fit toxin was activated at high levels in insect hosts, i.e. when needed, yet not on plant roots or in batch culture. By contrast, a derepressed fitH mutant expressed the toxin in all conditions. P. fluorescens hence can actively induce insect toxin production in response to the host environment, and FitH and FitG are key regulators in this mechanism.
Resumo:
Filarial parasites cause debilitating diseases in humans and domesticated animals. Brugia malayi and Dirofilaria immitis are transmitted by mosquitoes and infect humans and dogs, respectively. Their life cycle is punctuated by a series of cuticular molts as they move between different hosts and tissues. An understanding of the genetic basis for these developmental transitions may suggest potential targets for vaccines or chemotherapeutics. Nuclear receptor (NR) proteins have been implicated in molting in the free-living nematode Caenorhabditis elegans and have well characterized roles in molting during larval development of Drosophila melanogaster. For example, the D. melanogaster E75 (NR1D3) NR gene is required for molting and metamorphosis, as well as egg chamber development in adult females. We have identified Bm-nhr-11and Di-nhr-6, B. malayi and D. immitis orthologues of E75. Both genes encode canonical nuclear receptor proteins, are developmentally regulated, and are expressed in a sex-specific manner in adults.
Resumo:
Doñana National Park (DNP) in southern Spain is a UNESCO Biosphere Reserve where commercial hunting and wildlife artificial feeding do not take place and traditional cattle husbandry still exists. Herein, we hypothesized that Mycobacterium bovis infection prevalence in wild ungulates will depend on host ecology and that variation in prevalence will reflect variation in the interaction between hosts and environmental risk factors. Cattle bTB reactor rates increased in DNP despite compulsory testing and culling of infected animals. In this study, 124 European wild boar, 95 red deer, and 97 fallow deer were sampled from April 2006 to April 2007 and analyzed for M. bovis infection. Modelling and GIS were used to identify risk factors and intra and inter-species relationships. Infection with M. bovis was confirmed in 65 (52.4%) wild boar, 26 (27.4%) red deer and 18 (18.5%) fallow deer. In the absence of cattle, wild boar M. bovis prevalence reached 92.3% in the northern third of DNP. Wild boar showed more than twice prevalence than that in deer (p<0.001). Modelling revealed that M. bovis prevalence decreased from North to South in wild boar (p<0.001) and red deer (p<0.01), whereas no spatial pattern was evidenced for fallow deer. Infection risk in wild boar was dependent on wild boar M. bovis prevalence in the buffer area containing interacting individuals (p<0.01). The prevalence recorded in this study is among the highest reported in wildlife. Remarkably, this high prevalence occurs in the absence of wildlife artificial feeding, suggesting that a feeding ban alone would have a limited effect on wildlife M. bovis prevalence. In DNP, M. bovis transmission may occur predominantly at the intra-species level due to ecological, behavioural and epidemiological factors. The results of this study allow inferring conclusions on epidemiological bTB risk factors in Mediterranean habitats that are not managed for hunting purposes. Our results support the need to consider wildlife species for the control of bTB in cattle and strongly suggest that bTB may affect animal welfare and conservation.
Resumo:
Bronchoalveolar lavage (BAL) is a minimally invasive procedure used to characterize the status of the alveolar space. Standardization of the procedure and the analysis of samples taken is essential for their proper interpretation. In nonresolving or ventilator-associated pneumonia, BAL contributes to the detection of resistant pathogens and noninfectious etiologies. In immunocompromised hosts with radiological infiltrates, BAL should be performed early during work-up since outcome is significantly modified in this population group. In cases of interstitial lung disease, BAL can exclude infectious or neoplastic causes. Associated with a clinical and radiological evaluation, it provides valuables additional diagnostic information.
Resumo:
Bacillary angiomatosis is a recently described infectious disease that usually affects immunosupressed hosts with a previous history of contact with cats. We report a rare case of bacillary angiomatosis in an immunocompetent 59-year-old woman with no history of previous exposure to cats, and atypical clinical features (fever and subcutaneous nodules with ulceration on the left ankle). Histopathology of the lesion showed extensive ulceration and reactive tumor-like vascular proliferation of the blood vessels with swollen endothelial cells and an inflammatory infiltrate including neutrophils and lymphocytes in the dermis and subcutis. Staining with the Warthin-Starry method demonstrated the presence of clustered bacilli located in the extracellular matrix adjacent to the proliferating endothelial cells. Diagnosis was confirmed with the detection of Bartonella spp. DNA in the affected skin and in bone marrow using polymerase chain reaction.
Resumo:
This paper presents the morphological, histological and ultrastructural characteristics of Myxobolus oliveirai sp. nov., a parasite of the gill filaments in Brycon hilarii from the Brazilian Pantanal. Out of 216 B. hilariispecimens examined (126 wild and 90 cultivated), 38.1% of wild specimens (n = 48) were infected. The parasites form elongated plasmodia primarily in the tip of gill filaments, reaching about 3 mm in length. A thorough comparison with all the Myxobolus species described from South American hosts, as well as nearly all the Myxobolus species described so far is provided. Partial sequencing of the 18S rDNA gene revealed a total of 1,527 bp. The Myxobolus species parasite of B. hilarii did not match any of the Myxozoa available in GenBank. In the phylogenetic analysis, M. oliveirai sp. nov. composed a monophyletic group with eight other species: five species of Myxobolus parasites of mugilid fishes, two parasites of pangasiid and one of centrarchid. Infection prevalence values of the parasite revealed no significant differences between wet and dry seasons or between males and females. The importance of the infection to the farming of the host species is emphasized.
Resumo:
Leishmania amazonensis causes different diseases depending on the host and parasitic virulence factors. In this study, CBA mice were infected with L. amazonensis isolates from patients with localized (Ba125), diffuse cutaneous (Ba276) or visceral leishmaniasis (Ba109). Mice infected with Ba125 and Ba276 progressed rapidly and lesions displayed an infiltrate rich in parasitized macrophages and were necrotic and ulcerated. Ba109 induced smaller lesions and a mixed inflammatory infiltrate without necrosis or ulceration. Ba109 induced an insidious disease with lower parasite load in CBA mice, similar to human disease. Levels of IFN-γ, IL-4 and IL-10 did not differ among the groups. Because all groups were unable to control the infection, expression of IL-4 associated with low production of IFN-γ in the early phase of infection may account for susceptibility, but others factors may contribute to the differences observed in inflammatory responses and infection progression. Evaluation of some parasitic virulence factors revealed that Ba276 exhibits higher ecto-ADPase and 5'-nucleotidase activities compared to the Ba109 and Ba125 strains. Both Ba276 and Ba125 had higher arginase activity in comparison to Ba109. Finally, these data suggest that the differences in enzyme activities among parasites can account for differences in host inflammatory responses and infection progression.
Resumo:
The life cycle of the protozoan Trypanosoma cruzi exposes it to several environmental stresses in its invertebrate and vertebrate hosts. Stress conditions are involved in parasite differentiation, but little is known about the stress response proteins involved. We report here the first characterization of stress-induced protein-1 (STI-1) in T. cruzi (TcSTI-1). This co-chaperone is produced in response to stress and mediates the formation of a complex between the stress proteins HSP70 and HSP90 in other organisms. Despite the similarity of TcSTI-1 to STI-1 proteins in other organisms, its expression profile in response to various stress conditions, such as heat shock, acidic pH or nutrient starvation, is quite different. Neither polysomal mRNA nor protein levels changed in exponentially growing epimastigotes cultured under any of the stress conditions studied. Increased levels of TcSTI-1 were observed in epimastigotes subjected to nutritional stress in the late growth phase. Co-immunoprecipitation assays revealed an association between TcSTI-1 and TcHSP70 in T. cruzi epimastigotes. Immunolocalization demonstrated that TcSTI-1 was distributed throughout the cytoplasm and there was some colocalization of TcSTI-1 and TcHSP70 around the nucleus. Thus, TcSTI-1 associates with TcHSP70 and TcSTI-1 expression is induced when the parasites are subjected to stress conditions during specific growth phase.