950 resultados para PROTEIN-SYNTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The eukaryotic translation initiation factor 2 alpha (eIF2α) is part of the initiation complex that drives the initiator amino acid methionine to the ribosome, a crucial step in protein translation. In stress conditions such as virus infection, endoplasmic reticulum (ER) stress, amino acid or heme deficiency eIF2α can be phosphorylated and thereby inhibit global protein synthesis. This adaptive mechanism prevents protein accumulation and consequent cytotoxic effects. Heme-regulated eIF2α kinase (HRI) is a member of the eIF2α kinase family that regulates protein translation in heme deficiency conditions. Although present in all tissues, HRI is predominantly expressed in erythroid cells where it remains inactive in the presence of normal heme concentrations. In response to heme deficiency, HRI is activated and phosphorylates eIF2α decreasing globin synthesis. This mechanism is important to prevent accumulation of heme-free globin chains which cause ER stress and apoptosis. RNA sequencing data from our group showed that in human islets and in primary rat beta cells HRI is the most expressed eIF2α kinase compared to the other family members. Despite its high expression levels, little is known about HRI function in beta cells. The aim of this project is to identify the role of HRI in pancreatic beta cells. This was investigated taking a loss-of-function approach. HRI knock down (KD) by RNA interference induced beta cell apoptosis in basal condition. HRI KD potentiated the apoptotic effects of palmitate or proinflammatory cytokines, two in vitro models for type 2 and type 1 diabetes, respectively. Increased cytokine-induced apoptosis was also observed in HRI-deficient primary rat beta cells. Unexpectedly, we observed a mild increase in eIF2α phosphorylation in HRI-deficient cells. The levels of mRNA or protein expression of C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) were not modified. HRI KD cells have decreased spliced X-box binding protein 1 (XBP1s), an important branch of the ER stress response. However, overexpression of XBP1s by adenovirus in HRI KD cells did not protect from HRI siRNA-induced apoptosis. HRI deficiency decreased phosphorylation of Akt and its downstream targets glycogen synthase kinase 3 (GSK3), forkhead box protein O1 (FOXO1) and Bcl-2-associated death promoter (BAD). Overexpression of a constitutively active form of Akt by adenovirus in HRI-deficient beta cells partially decreased HRI KD-mediated apoptosis. Interestingly, BAD silencing protected from apoptosis caused by HRI deficiency. HRI silencing in beta cells also induced JNK activation. These results suggest an important role of HRI in beta cell survival through modulation of the Akt/BAD pathway. Thus, HRI may be an interesting target to modulate beta cell fate in diabetic conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well established that long-term changes in synaptic structure and function are mediated by rapid activity-dependent gene transcription and new protein synthesis. A growing body of evidence supports the involvement of the microRNA (miRNA) pathway in these processes. We have used the Drosophila neuromuscular junction (NMJ) as a model synapse to characterize activity-regulated miRNAs and their important mRNA targets. Here, we have identified five neuronal miRNAs (miRs-1, -8, -289, -314, and -958) that are significantly downregulated in response to neuronal activity. Furthermore we have discovered that neuronal misexpression of three of these miRNAs (miR-8, -289, and -958) is capable of suppressing new synaptic growth in response to activity suggesting that these miRNAs control the translation of biologically relevant target mRNAs. Putative targets of the activity-regulated miRNAs-8 and -289 are significantly enriched in clusters mapping to functional processes including axon development, pathfinding, and axon growth. We demonstrate that activity-regulated miR-8 regulates the 3'UTR of wingless, a presynaptic regulatory protein involved in the process of activity-dependent axon terminal growth. Additionally, we show that the 3'UTR of the protein tyrosine phosophatase leukocyte antengen related (lar), a protein required for axon guidance and synaptic growth, is regulated by activity-regulated miRNAs-8, -289, and -958 in vitro. Both wg and lar were identified as relevant putative targets for co-regulation based through our functional cluster analysis. One putative target of miR-289 is the Ca2+/calmodulin-dependent protein kinase II (CamKII). While CamKII is not predicted as a target for co-regulation by multiple activity-regulated miRNAs we identified it as an especially pertinent target for analysis in our system for two reasons. First, CamKII has an extremely well characterized role in postsynaptic plasticity, but its presynaptic role is less well characterized and bears further analysis. Second, local translation of CamKII mRNA is regulated in part by the miRNA pathway in an activity-dependent manner in dendrites. We find that the CamKII 3'UTR is regulated by miR-289 in-vitro and this regulation is alleviated by mutating the `seed region' of the miR-289 binding site within the CamKII 3'UTR. Furthermore, we demonstrate a requirement for local translation of CamKII in motoneurons in the process of activity-regulated axon terminal growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducción: El informe emitido por la Agencia Europea de Seguridad Alimentaria (EFSA) en 2010 sobre las declaraciones nutricionales y propiedades saludables, muestra que no existen evidencias científicas que apoyen la suplementación con aminoácidos ramificados (BCAAs). El objetivo de este estudio es analizar los efectos del consumo de suplementos de BCAAs en deportes de larga duración (DLD). Métodos: Estudio descriptivo de revisión bibliográfica sobre el estado actual del efecto del consumo de suplementos de BCAAs. Se realizó una búsqueda en la base de datos PubMed y estrategia de bola de nieve. Criterios de inclusión: Estudios realizados en humanos, ensayos clínicos controlados aleatorizados (ECCA) en castellano/inglés relacionados con el consumo de BCAAs, leucina, valina e isoleucina en DLD y sus efectos sobre el daño muscular, rendimiento deportivo, fatiga central, respuesta anabólica y sistema inmunológico publicados en cualquier país hasta mayo 2014. Resultados: De los 330 estudios identificados, 14 cumplieron los criterios de inclusión. La media de sujetos participantes en los estudio es igual a (11,36 ± 7,43). Sólo dos estudios incluyen un grupo de mujeres. Las disciplinas deportivas que se encontraron en los estudios fueron carrera a pie, ciclismo, combinación ciclismo y carrera a pie, triatlón distancia olímpica y un estudio que incluía 2 grupos de deportistas (triatlón distancia olímpica y carrera a pie). Se estudian los efectos de los BCAAs y daño muscular, rendimiento deportivo, fatiga central, respuesta anabólica en periodo de recuperación y respuesta inmunológica en periodos diferentes del entrenamiento: antes, durante y después o una combinación de éstos. Discusión: Se observa que existe un menor grado de dolor y daño muscular, menor percepción del esfuerzo y fatiga mental, mayor respuesta anabólica en periodo de recuperación y mejora de la respuesta inmunológica cuando se suplementa con BCAAs, no obstante su toma antes o durante la actividad física no mejora el rendimiento deportivo. No se ha encontrado consenso en la dosis y cronología de la toma más eficaz, aunque es más efectivo si hay una relación 2-3/1/1g, entre los aminoácidos Leucina/ Isoleucina y Valina.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La voie de signalisation des phosphoinositides joue un rôle clé dans la régulation du tonus vasculaire. Plusieurs études rapportent une production endogène de l’angiotensin II (Ang II) et de l’endothéline-1 (ET-1) par les cellules musculaires lisses vasculaires (CMLVs) de rats spontanément hypertendus (spontaneously hypertensive rats : SHR). De plus, l’Ang II exogène induit son effet prohypertrophique sur les CMLVs selon un mécanisme dépendant de la protéine Gqα et de la PKCẟ. Cependant, le rôle de l’axe Gqα/PLCβ/PKCẟ dans l’hypertrophie des CMLVs provenant d’un modèle animal de l’hypertension artérielle n’est pas encore étudié. L’objectif principal de cette thèse est d’examiner le rôle de l’axe Gqα/PLCβ1 dans les mécanismes moléculaires de l’hypertrophie des CMLVs provenant d’un modèle animal d’hypertension artérielle essentielle (spontaneously hypertensive rats : SHR). Nos premiers résultats indiquent que contrairement aux CMLVs de SHR âgés de 12 semaines (absence d’hypertrophie cardiaque), les CMLVs de SHR âgés de 16 semaines (présence d’hypertrophie cardiaque) présentent une surexpression protéique endogène de Gqα et de PLCβ1 par rapport aux CMLVs de rats WKY appariés pour l’âge. L’inhibition du taux d’expression protéique de Gqα et de PLCβ1 par des siRNAs spécifiques diminue significativement le taux de synthèse protéique élevé dans les CMLVs de SHR. De plus, la surexpression endogène des Gqα et PLCβ1, l’hyperphosphorylation de la molécule ERK1/2 et le taux de synthèse protéique élevé dans les CMLVs de SHR de 16 semaines ont été atténués significativement par des antagonistes des récepteurs AT1 (losartan) et ETA (BQ123), mais pas par l’antagoniste du récepteur ETB (BQ788). L’inhibition pharmacologique des MAPKs par PD98059 diminue significativement la surexpression endogène de Gqα/PLCβ1 et le taux de synthèse protéique élevé dans les CMLVs de SHR. D’un côté, l’inhibition du stress oxydatif (par DPI, inhibiteur de la NAD(P)H oxidase, et NAC , molécule anti-oxydante), de la molécule c-Src (PP2) et des récepteurs de facteurs de croissance (AG1024 (inhibiteur de l’IGF1-R), AG1478 (inhibiteur de l’EGFR) et AG1295 (inhibiteur du PDGFR)) a permis d’atténuer significativement la surexpression endogène élevée de Gqα/PLCβ1 et l’hypertrophie des CMLVs de SHR. D’un autre côté, DPI, NAC et PP2 atténuent significativement l’hyperphosphorylation de la molécule c-Src, des RTKs (récepteurs à activité tyrosine kinase) et de la molécule ERK1/2. Dans une autre étude, nous avons aussi démontré que la PKCẟ montre une hyperphosphorylation en Tyr311 dans les CMLVs de SHR comparées aux CMLVs de WKY. La rottlerin, utilisée comme inhibiteur spécifique de la PKCẟ, inhibe significativement cette hyperphosphorylation en Tyr311 dépendamment de la concentration. L’inhibition de l’activité de la PKCẟ par la rottlerin a été aussi associée à une atténuation significative de la surexpression protéique endogène de Gqα/PLCβ1 et l’hypertrophie des CMLVs de SHR. De plus, l’inhibition pharmacologique de l’activité de la PKCẟ, en amont du stress oxydatif, a permis d’inhiber significativement l’activité de la NADPH, le taux de production élevée de l’ion superoxyde ainsi que l’hyperphosphorylation de la molécule ERK1/2, de la molécule c-Src et des RTKs. À notre surprise, nous avons aussi remarqué une surexpression protéique de l’EGFR et de l’IGF-1R dans les CMLVs de SHR à l’âge de 16 semaines. L’inhibition pharmacologique de l’activité de la PKCẟ, de la molécule c-Src et du stress oxydatif a permis d’inhiber significativement la surexpression protéique endogène de ces RTKs. De plus, l’inhibition de l’expression protéique de l’EGFR et de la molécule c-Src par des siRNA spécifiques atténue significativement le taux d’expression protéique élevé de Gqα et de PLCβ1 ainsi que le taux de synthèse protéique élevé dans les CMLVs de SHR. Des siRNAs spécifiques à la PKCẟ ont permis d’atténuer significativement le taux de synthèse protéique élevé dans les CMLVs de SHR et confirment le rôle important de la PKCẟ dans les mécanismes moléculaires de l’hypertrophie des CMLVs selon une voie dépendante du stress oxydatif. En conclusion, ces résultats suggèrent un rôle important de l’activation endogène de l’axe Gqα-PLCβ-PKCẟ dans le processus d’hypertrophie vasculaire selon un mécanisme impliquant une activation endogène des récepteurs AT1/ETa, de la molécule c-Src, du stress oxidatif, des RTKs et des MAPKs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To increase transient expression of recombinant proteins in Chinese hamster ovary cells, we have engineered their protein synthetic capacity by directed manipulation of mRNA translation initiation. To control this process we constructed a nonphosphorylatable Ser51Ala site-directed mutant of eIF2, a subunit of the trimeric eIF2 complex that is implicated in regulation of the global rate of mRNA translation initiation in eukaryotic cells. Phosphorylation of eIF2 by protein kinases inhibits eIF2 activity and is known to increase as cells perceive a range of stress conditions. Using single-and dual-gene plasmids introduced into CHO cells by electroporation, we found that transient expression of the eIF2 Ser51Ala mutant with firefly luciferase resulted in a 3-fold increase in reporter activity, relative to cells transfected with reporter only. This effect was maintained in transfected cells for at least 48 h after transfection. Expression of the wild-type eIF2 protein had no such effect. Elevated luciferase activity was associated with a reduction in the level of eIF2 phosphorylation in cells transfected with the mutant eIF2 construct. Transfection of CHO cells with the luciferase-only construct resulted in a marked decrease in the global rate of protein synthesis in the whole cell population 6 h post-transfection. However, expression of the mutant Ser51Ala or wild-type eIF2 proteins restored the rate of protein synthesis in transfected cells to a level equivalent to or exceeding that of control cells. Associated with this, entry of plasmid DNA into cells during electroporation was visualized by confocal microscopy using a rhodamine-labeled plasmid construct expressing green fluorescent protein. Six hours after transfection, plasmid DNA was present in all cells, albeit to a variable extent. These data suggest that entry of naked DNA into the cell itself functions to inhibit protein synthesis by signaling mechanisms affecting control of mRNA translation by eIF2. This work therefore forms the basis of a rational strategy to generically up-regulate transient expression of recombinant proteins by simultaneous host cell engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exogenous transfer RNAs (tRNAs) favor translation of bovine papillomavirus 1 wild-type (wt) L1 mRNA in in vitro translation systems (Zhou et al. 1999, J. Virol., 73, 4972-4982). We, therefore, investigated whether papillomavirus (PV) wt L1 protein expression could be enhanced in eukaryotic cells following exogenous tRNA supplementation. Both Chinese hamster ovary (CHO) and Cos1 cells, transfected with PV1 wt L1 genes, effectively transcribed the genes but did not translate them. However, L1 protein translation was demonstrated following co-transfection with the L1 gene and a gene expressing tRNA(Ser)(CGA). Cell lines, stably transfected with a bovine papillomavirus 1 (BPV1) wt L1 expression construct, produced L1 protein after the transfection of the tRNA(Ser)(CGA) gene, but not following the transfection with basal vectors, suggesting that tRNA(Ser)(CGA) gene enhanced wt L1 translation as a result of endogenous tRNA alterations and phosphorylation of translation initiation factors elF4E and elF2alpha in the tRNA(Ser)(CGA) transfected L1 cell lines. The tRNA(Ser)(CGA) gene expression significantly reduced translation of L1 proteins expressed from codon-modified (HB) PV L1 genes utilizing mammalian preferred codons, but had variable effects on translation of green fluorescent proteins (GFPs) expressed from six serine GFP variants. The changes of tRNA pools appear to match the codon composition of PV wt and HB L1 genes and serine GFP variants to regulate translation of their mRNAs. These findings demonstrate for the first time in eukaryotic cells that translation of the target genes can be differentially influenced by the provision of a single tRNA expression construct.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pyramidal neurons are covered with dendritic spines, the main postsynaptic targets of excitatory (asymmetrical) synapses. However, the proximal portion of both the apical and basal dendrites is devoid of spines, suggesting a lack of excitatory inputs to this region. In the present study we used electron microscopy to analyse the proximal region of the basal dendrites of supra- and infragranular pyramidal cells to determine if this is the case. The proximal region of 80 basal dendrites sampled from the rat hindlimb representation in the primary somatosensory cortex was studied by electron microscopy A total of 317 synapses were found within this region of the dendrites, all of which were of the symmetrical type. These results suggest that glutamate receptors, although present in the cytoplasm, are not involved in synaptic junctions in the proximal portion of the dendrites. These data further support the idea that inhibitory terminals exclusively innervate the proximal region of basal dendrites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Upstream AUGs (uAUGs) and upstream open reading frames (uORFs) are common features of mRNAs that encode regulatory proteins and have been shown to profoundly influence translation of the main ORF. In this study, we employed a series of artificial 5'-untranslated regions (5'-UTRs) containing one or more uAUGs/uORFs to systematically assess translation initiation at the main AUG by leaky scanning and reinitiation mechanisms. Constructs containing either one or two uAUGs in varying contexts but without an in-frame stop codon upstream of the main AUG were used to analyse the leaky scanning mechanism. This analysis largely confirmed the ranking of different AUG contextual sequences that was determined previously by Kozak. In addition, this ranking was the same for both the first and second uAUGs, although the magnitude of initiation efficiency differed. Moreover, similar to10% of ribosomes exhibited leaky scanning at uAUGs in the most favourable context and initiated at a downstream AUG. A second group of constructs containing different numbers of uORFs, each with optimal uAUGs, were used to measure the capacity for reinitiation. We found significant levels of initiation at the main ORF even in constructs containing four uORFs, with nearly 10% of ribosomes capable of reinitiating five times. This study shows that for mRNAs containing multiple uORFs/uAUGs, ribosome reinitiation and leaky scanning are efficient mechanisms for initiation at their main AUGs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oligomeric lipid raft-associated integral protein stomatin normally localizes to the plasma membrane and the late endosomal compartment. Similar to the caveolins, it is targeted to lipid bodies (LBs) on overexpression. Endogenous stomatin also associates with LBs to a small extent. Green fluorescent protein-tagged stomatin (StomGFP) and the dominant-negative caveolin-3 mutant DGV(cav3)(HA) occupy distinct domains on LB surfaces but eventually intermix. Studies of StomGFP deletion mutants reveal that the region for membrane association but not oligomerization and raft association is essential for LB targeting. Blocking protein synthesis leads to the redistribution of StomGFP from LBs to LysoTracker-positive vesicles indicating a connection with the late endosomal/ lysosomal pathway. Live microscopy of StomGFP reveals multiple interactions between LBs and microtubule-associated vesicles possibly representing signaling events and/or the exchange of cargo. Proteomic analysis of isolated LBs identifies adipophilin and TIP47, various lipid-specific enzymes, cytoskeletal components, chaperones, Ras-related proteins, protein kinase D2, and other regulatory proteins. The association of the Rab proteins 1, 6, 7, 10, and 18 with LBs indicates various connections to other compartments. Our data suggest that LBs are not only involved in the storage of lipids but also participate actively in the cellular signaling network and the homeostasis of lipids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By establishing mouse primary keratinocytes (KCs) in culture, we were able, for the first time, to express papillomavirus major capsid (L1) proteins by transient transfection of authentic or codon-modified L1 gene expression plasmids. We demonstrate in vitro and in vivo that gene codon composition is in part responsible for differentiation-dependent expression of L1 protein in KCs. L1 mRNA was present in similar amounts in differentiated and undifferentiated KCs transfected with authentic or codon-modified L1 genes and had a similar half-life, demonstrating that L1 protein production is posttranscriptionally regulated. We demonstrate further that KCs substantially change their tRNA profiles upon differentiation. Aminoacyl-tRNAs from differentiated KCs but not undifferentiated KCs enhanced the translation of authentic L1 mRNA, suggesting that differentiation-associated change to tRNA profiles enhances L1 expression in differentiated KCs. Thus, our data reveal a novel mechanism for regulation of gene expression utilized by a virus to direct viral capsid protein expression to the site of virion assembly in mature KCs. Analysis of two structural proteins of KCs, involucrin and keratin 14, suggests that translation of their mRNAs is also regulated, in association with KC differentiation in vitro, by a similar mechanism

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During aestivation, the gut of the green-striped burrowing frog, Cyclorana alboguttata undergoes significant morphological down-regulation. Despite the potential impact such changes might have on the re-feeding efficiency of these animals following aestivation, they appear to be as efficient at digesting their first meals as active, non-aestivating animals. Such efficiency might come about by the rapid restoration of intestinal morphology with both arousal from aestivation and the initial stages of re-feeding. Consequently, this study sought to determine what morphological changes to the intestine accompany arousal and re-feeding following 3 months of aestivation. Arousal from aestivation alone had a marked impact on many morphological parameters, including small and large intestine masses, small intestinal length, LF heights, enterocyte cross-sectional area and microvilli height and density. In addition, the onset of re-feeding was correlated with an immediate reversal of many morphological parameters affected by 3 months of aestivation. Those parameters that had not returned to control levels within 36 h of feeding generally had returned to control values by the completion of digestion (i.e. defecation of the meal). Re-feeding was also associated with several changes in enterocyte morphology including the incorporation in intracytoplasmic lipid droplets and the return of enterocyte nuclear material to the 'active' euchromatin state: In conclusion, morphological changes to the gut of aestivating frogs which occur during aestivation are transitory and rapidly reversible with both arousal from aestivation and re-feeding. The proximate causes behind these transitions and their functional significance are discussed. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a first step toward understanding the molecular basis of pineapple fruit development, a sequencing project was initiated to survey a range of expressed sequences from green unripe and yellow ripe fruit tissue. A highly abundant metallothionein transcript was identified during library construction, and was estimated to account for up to 50% of all EST library clones. Library clones with metallothionein subtracted were sequenced, and 408 unripe green and 1140 ripe yellow edited EST clone sequences were retrieved. Clone redundancy was high, with the combined 1548 clone sequences clustering into just 634 contigs comprising 191 consensus sequences and 443 singletons. Half of the EST clone sequences clustered within 13.5% and 9.3% of contigs from green unripe and yellow ripe libraries, respectively, indicating that a small subset of genes dominate the majority of the transcriptome. Furthermore, sequence cluster analysis, northern analysis, and functional classification revealed major differences between genes expressed in the unripe green and ripe yellow fruit tissues. Abundant genes identified from the green fruit include a fruit bromelain and a bromelain inhibitor. Abundant genes identified in the yellow fruit library include a MADS box gene, and several genes normally associated with protein synthesis, including homologues of ribosomal L10 and the translation factors SUI1 and eIF5A. Both the green unripe and yellow ripe libraries contained high proportions of clones associated with oxidative stress responses and the detoxification of free radicals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfate plays an essential role in human growth and development, and its circulating levels are maintained by the renal Na+-SO42- cotransporter, NaS1. We previously generated a NaS1 knockout ( Nas1(-/-)) mouse, an animal model for hyposulfatemia, that exhibits reduced growth and liver abnormalities including hepatomegaly. In this study, we investigated the hepatic gene expression profile of Nas1(-/-) mice using oligonucleotide microarrays. The mRNA expression levels of 92 genes with known functional roles in metabolism, cell signaling, cell defense, immune response, cell structure, transcription, or protein synthesis were increased ( n = 51) or decreased ( n = 41) in Nas1(-/-) mice when compared with Nas1(-/-) mice. The most upregulated transcript levels in Nas1(-/-) mice were found for the sulfotransferase genes, Sult3a1 ( approximate to 500% increase) and Sult2a2 ( 100% increase), whereas the metallothionein-1 gene, Mt1, was among the most downregulated genes ( 70% decrease). Several genes involved in lipid and cholesterol metabolism, including Scd1, Acly, Gpam, Elov16, Acsl5, Mvd, Insig1, and Apoa4, were found to be upregulated ( >= 30% increase) in Nas1(+/+) mice. In addition, Nas1(+/+) mice exhibited increased levels of hepatic lipid ( approximate to 16% increase), serum cholesterol ( approximate to 20% increase), and low-density lipoprotein ( approximate to 100% increase) and reduced hepatic glycogen ( approximate to 50% decrease) levels. In conclusion, these data suggest an altered lipid and cholesterol metabolism in the hyposulfatemic Nas1(-/-) mouse and provide new insights into the metabolic state of the liver in Nas1(-/-) mice.