944 resultados para PRIMITIVE EQUATIONS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Suppose that u(t) is a solution of the three-dimensional Navier-Stokes equations, either on the whole space or with periodic boundary conditions, that has a singularity at time T. In this paper we show that the norm of u(T - t) in the homogeneous Sobolev space (H)over dot(s) must be bounded below by c(s)t(-(2s-1)/4) for 1/2 < s < 5/2 (s not equal 3/2), where c(s) is an absolute constant depending only on s; and by c(s)parallel to u(0)parallel to((5-2s)/5)(L2)t(-2s/5) for s > 5/2. (The result for 1/2 < s < 3/2 follows from well-known lower bounds on blowup in Lp spaces.) We show in particular that the local existence time in (H)over dot(s)(R-3) depends only on the (H)over dot(s)-norm for 1/2 < s < 5/2, s not equal 3/2. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762841]
Resumo:
For data obtained from horizontal soil column experiments, the determination of soil-water transport characteristics and functions would be aided by a single-form equation capable of objectively describing water content theta vs. time t at given position x(f). Our study was conducted to evaluate two such possible equations, one having the form of the Weibull frequency distribution, and the other being called a bipower form. Each equation contained three parameters, and was fitted by nonlinear least squares to the experimental data from three separate columns of a single soil. Across the theta range containing the measured data points obtained by gamma-ray attenuation, the two equations were in close agreement. The resulting family of theta(x(f),t) transients, as obtained from either equation, enabled the evaluation of exponent n in the t(n) dependence of the positional advance of a given theta. Not only was n found to be <0.5 at low theta values, but it also increased with theta and tended toward 0.5 as theta approached its sated (near-saturated) value. Some quantitative uncertainty in n(theta) does arise due to the reduced number of data points available at the higher water contents. Without claiming non-Boltzmann behavior (n < 0.5) as necessarily representative of all soils, we nonetheless consider n(theta) to be worthy of further study for evaluating its significance and implications.
Resumo:
In this work we consider the effect of a spatially dependent mass over the solution of the Klein-Gordon equation in 1 + 1 dimensions, particularly the case of inversely linear scalar potential, which usually presents problems of divergence of the ground-state wave function at the origin, and possible nonexistence of the even-parity wave functions. Here we study this problem, showing that for a certain dependence of the mass with respect to the coordinate, this problem disappears. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A system of coupled evolution equations for the bulk velocity and the surface displacement is found to govern the long-wavelength perturbations in a Benard-Marangoni system. This system of equations, involving nonlinearity, dispersion, and dissipation, is a generalization of the usual Boussinesq system.
Resumo:
We calculate the contribution of relativistic dynamics on the neutron-deutron scattering length and triton binding energy employing five sets trinucleon potential models and four types of three-dimensional relativistic three-body equations suggested in the preceding paper. The relativistic correction to binding energy may vary a lot and even change sign depending on the relativistic formulation employed. The deviations of these observables from those obtained in nonrelativistic models follow the general universal trend of deviations introduced by off- and on-shell variations of two- and three-nucleon potentials in a nonrelativistic model calculation. Consequently, it will be difficult to separate unambiguously the effect of off- and on-shell variations of two- and three-nucleon potentials on low-energy three-nucleon observables from the effect of relativistic dynamics. (C) 1994 Academic Press, Inc.
THE CHROMOSOMES OF A PRIMITIVE SPECIES OF BEETLE - YTU-ZEUS (COLEOPTERA, MYXOPHAGA, TORRIDINCOLIDAE)
Resumo:
Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, we rederive three-dimensional scattering integral equations satisfying constraints of relativistic unitarity and convariance, first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, we derive several three-dimensional three-particle scattering equations satisfying constraints of relativistic unitarity and convariance. We relate two of these three-particle equations by a transformation of variables as in the two-particle case. The three-particle equations we derive are very practical and suitable for performing relativistic scattering calculations. (C) 1994 Academic Press, Inc.
Resumo:
We derive a set of relativistic three-particle scattering equations in the three-particle c.m. frame employing a relativistic three-particle propagator suggested long ago by Ahmadzadeh and Tjon in the c.m. frame of a two-particle subsystem. We make the coordinate transformation of this propagator from the c.m. frame of the two-particle subsystem to the three-particle c.m. frame. We also point out that some numerical applications of the Ahmadzadeh and Tjon propagator to the three-nucleon problem use unnecessary nonrelativistic approximations which do not simplify the computational task, but violate constraints of relativistic unitarity and/or covariance.
Resumo:
The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.
Resumo:
In this paper we discuss the existence of compact attractor for the abstract semilinear evolution equation u = Au + f (t, u); the results are applied to damped partial differential equations of hyperbolic type. Our approach is a combination of Liapunov method with the theory of alpha-contractions.
Resumo:
Dichotomic maps are considered by means of the stability and asymptotic stability of the null solution of a class of differential equations with argument [t] via associated discrete equations, where [.] designates the greatest integer function.