932 resultados para POSTTRAUMATIC STRESS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The close form solutions of deflections and curvatures for a film-substrate composite structure with the presence of gradient stress are derived. With the definition of more precise kinematic assumption, the effect of axial loading due to residual gradient stress is incorporated in the governing equation. The curvature of film-substrate with the presence of gradient stress is shown to be nonuniform when the axial loading is nonzero. When the axial loading is zero, the curvature expressions of some structures derived in this paper recover the previous ones which assume the uniform curvature. Because residual gradient stress results in both moment and axial loading inside the film-substrate composite structure, measuring both the deflection and curvature is proposed as a safe way to uniquely determine the residual stress state inside a film-substrate composite structure with the presence of gradient stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal stress wave and spallation in aluminium alloy exposed to a high fluency and low energy electron beams are studied theoretically. A simple model for the study of energy deposition of electrons in materials is presented on the basis of some empirical formulae. Under the stress wave induced by energy deposition, microcracks and/or microvoids may appear in target materials, and in this case, the inelastic volume deformation should not vanish. The viscoplastic model proposed by Bodner and Partom with corresponding Gurson's yield function requires modification for this situation. The new constitutive model contains a scalar field variable description of the material damage which is taken as the void volume fraction of the polycrystalline material. Incorporation of the damage parameter permits description of rate-dependent, compressible, inelastic deformation and ductile fracture. The melting phenomenon has been observed in the experiment, therefore one needs to take into account the melting process in the intermediate energy deposition range. A three-phase equation of state used in the paper provides a more detailed and thermodynamical description of metals, particularly, in the melting region. The computational results based on the suggested model are compared with the experimental test for aluminium alloy, which is subjected to a pulsed electron beam with high fluency and low energy. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic stress intensity factor histories for a half plane crack in an otherwise unbounded elastic body are analyzed. The crack is subjected to a traction distribution consisting of two pairs of suddenly-applied shear point loads, at a distance L away from the crack tip. The exact expression for the combined mode stress intensity factors as the function of time and position along the crack edge is obtained. The method of solution is based on the direct application of integral transforms together with the Wiener-Hopf technique and the Cagniard-de Hoop method, which were previously believed to be inappropriate. Some features of solutions are discussed and the results are displayed in several figures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.