954 resultados para PHYSICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium cells involve a range of complex physical processes which act simultaneously to provide a narrow satisfactory operating range. These processes involve electromagnetic fields, coupled with heat transfer and phase change, two phase fluid flow with a range of complexities plus the development of stress in the cell structure. All of these phenomena are coupled in some significant sense and so to provide a comprehensive model of these processes involves their representation simultaneously. Conventionally, aspects of the process have been modeled separately using uncoupled estimates of the effects of the other phenomena; this has enabled the use of standard commercial CFD and FEA tools. In this paper we will describe an approach to the modeling of aluminium cells which describes all the physics simultaneously. This approach uses a finite volume approximation for each of the phenomena and facilitates their interactions directly in the modeling-the complex geometries involved are addressed by using unstructured meshes. The very challenging issues to be overcome in this venture will be outlined and some preliminary results will be shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unstructured mesh codes for modelling continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Parallelisation of such codes using single Program Multi Data (SPMD) domain decomposition techniques implemented with message passing has been demonstrated to provide high parallel efficiency, scalability to large numbers of processors P and portability across a wide range of parallel platforms. High efficiency, especially for large P requires that load balance is achieved in each parallel loop. For a code in which loops span a variety of mesh entity types, for example, elements, faces and vertices, some compromise is required between load balance for each entity type and the quantity of inter-processor communication required to satisfy data dependence between processors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a microscopic setting, humans behave in rich and unexpected ways. In a macroscopic setting, however, distinctive patterns of group behavior emerge, leading statistical physicists to search for an underlying mechanism. The aim of this dissertation is to analyze the macroscopic patterns of competing ideas in order to discern the mechanics of how group opinions form at the microscopic level. First, we explore the competition of answers in online Q&A (question and answer) boards. We find that a simple individual-level model can capture important features of user behavior, especially as the number of answers to a question grows. Our model further suggests that the wisdom of crowds may be constrained by information overload, in which users are unable to thoroughly evaluate each answer and therefore tend to use heuristics to pick what they believe is the best answer. Next, we explore models of opinion spread among voters to explain observed universal statistical patterns such as rescaled vote distributions and logarithmic vote correlations. We introduce a simple model that can explain both properties, as well as why it takes so long for large groups to reach consensus. An important feature of the model that facilitates agreement with data is that individuals become more stubborn (unwilling to change their opinion) over time. Finally, we explore potential underlying mechanisms for opinion formation in juries, by comparing data to various types of models. We find that different null hypotheses in which jurors do not interact when reaching a decision are in strong disagreement with data compared to a simple interaction model. These findings provide conceptual and mechanistic support for previous work that has found mutual influence can play a large role in group decisions. In addition, by matching our models to data, we are able to infer the time scales over which individuals change their opinions for different jury contexts. We find that these values increase as a function of the trial time, suggesting that jurors and judicial panels exhibit a kind of stubbornness similar to what we include in our model of voting behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite record-setting performance demonstrated by superconducting Transition Edge Sensors (TESs) and growing utilization of the technology, a theoretical model of the physics governing TES devices superconducting phase transition has proven elusive. Earlier attempts to describe TESs assumed them to be uniform superconductors. Sadleir et al. 2010 shows that TESs are weak links and that the superconducting order parameter strength has significant spatial variation. Measurements are presented of the temperature T and magnetic field B dependence of the critical current Ic measured over 7 orders of magnitude on square Mo/Au bilayers ranging in length from 8 to 290 microns. We find our measurements have a natural explanation in terms of a spatially varying order parameter that is enhanced in proximity to the higher transition temperature superconducting leads (the longitudinal proximity effect) and suppressed in proximity to the added normal metal structures (the lateral inverse proximity effect). These in-plane proximity effects and scaling relations are observed over unprecedentedly long lengths (in excess of 1000 times the mean free path) and explained in terms of a Ginzburg-Landau model. Our low temperature Ic(B) measurements are found to agree with a general derivation of a superconducting strip with an edge or geometric barrier to vortex entry and we also derive two conditions that lead to Ic rectification. At high temperatures the Ic(B) exhibits distinct Josephson effect behavior over long length scales and following functional dependences not previously reported. We also investigate how film stress changes the transition, explain some transition features in terms of a nonequilibrium superconductivity effect, and show that our measurements of the resistive transition are not consistent with a percolating resistor network model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis considers Eliot's critical writing from the late 1910s till the mid-1930s, in the light of his PhD thesis - Knowledge and Experience in the Philosophy of F. H. Bradley - and a range of unpublished material: T S. Eliot's Philosophical Essays and Notes (1913- 4) in the Hayward Bequest (King's College, Cambridge University); T. S. Eliot's Family Papers in the T. S. Eliot Collection at the Houghton Library (Harvard University); and items from the Harvard University Archives at the Pusey Library. 'Me thesis offers a comprehensive view of Eliot's critical development throughout this important period. It starts by considering The Sacred Wood's ambivalence towards the metaphysical philosophy of F. H. Bradley and Eliot's apparent adoption of a scientific method, under the influence of Bertrand Russell. It will be argued that Eliot uses rhetorical strategies which simultaneously subvert the method he is propounding, and which set the tone for an assessment of his criticism throughout the 1920s. His indecision, in this period, about the label 'Metaphysical' for some poets of the seventeenth century, reveals the persistence of the philosophical thought he apparently rejects in 1916, when he chooses not to pursue a career in philosophy in Harvard. This rhetorical tactic achieves its fulfilment in Dante (1929), where Eliot finds a model in the medieval allegorical method and 'philosophical' poetry. Allegory is also examined in connection with the evaluation of Eliot's critical writings themselves to determine, for instance, the figurative dimension of his early scientific vocabulary and uncover metaphysical residues he had explicitly disowned but would later embrace. Finally, it is suggested that, the hermeneutics of allegory are historical and it is used here to test the relationship between Eliot's early and later critical writings, that is the early physics and the later metaphysics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we will explore approaches to faculty instructional change in astronomy and physics. We primarily focus on professional development (PD) workshops, which are a central mechanism used within our community to help faculty improve their teaching. Although workshops serve a critical role for promoting more equitable instruction, we rarely assess them through careful consideration of how they engage faculty. To encourage a shift towards more reflective, research-informed PD, we developed the Real-Time Professional Development Observation Tool (R-PDOT), to document the form and focus of faculty's engagement during workshops. We then analyze video-recordings of faculty's interactions during the Physics and Astronomy New Faculty Workshop, focusing on instances where faculty might engage in pedagogical sense-making. Finally, we consider insights gained from our own local, team-based effort to improve a course sequence for astronomy majors. We conclude with recommendations for PD leaders and researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital rock physics combines modern imaging with advanced numerical simulations to analyze the physical properties of rocks -- In this paper we suggest a special segmentation procedure which is applied to a carbonate rock from Switzerland -- Starting point is a CTscan of a specimen of Hauptmuschelkalk -- The first step applied to the raw image data is a nonlocal mean filter -- We then apply different thresholds to identify pores and solid phases -- Because we are aware of a nonneglectable amount of unresolved microporosity we also define intermediate phases -- Based on this segmentation determine porositydependent values for the pwave velocity and for the permeability -- The porosity measured in the laboratory is then used to compare our numerical data with experimental data -- We observe a good agreement -- Future work includes an analytic validation to the numerical results of the pwave velocity upper bound, employing different filters for the image segmentation and using data with higher resolution

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone's magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical conditioning has been shown to promote tissue formation in a wide variety of tissue engineering efforts. However the underlying mechanisms by which external mechanical stimuli regulate cells and tissues are not known. This is particularly relevant in the area of heart valve tissue engineering (HVTE) owing to the intense hemodynamic environments that surround native valves. Some studies suggest that oscillatory shear stress (OSS) caused by steady flow and scaffold flexure play a critical role in engineered tissue formation derived from bone marrow derived stem cells (BMSCs). In addition, scaffold flexure may enhance nutrient (e.g. oxygen, glucose) transport. In this study, we computationally quantified the i) magnitude of fluid-induced shear stresses; ii) the extent of temporal fluid oscillations in the flow field using the oscillatory shear index (OSI) parameter, and iii) glucose and oxygen mass transport profiles. Noting that sample cyclic flexure induces a high degree of oscillatory shear stress (OSS), we incorporated moving boundary computational fluid dynamic simulations of samples housed within a bioreactor to consider the effects of: 1) no flow, no flexure (control group), 2) steady flow-alone, 3) cyclic flexure-alone and 4) combined steady flow and cyclic flexure environments. We also coupled a diffusion and convention mass transport equation to the simulated system. We found that the coexistence of both OSS and appreciable shear stress magnitudes, described by the newly introduced parameter OSI-:τ: explained the high levels of engineered collagen previously observed from combining cyclic flexure and steady flow states. On the other hand, each of these metrics on its own showed no association. This finding suggests that cyclic flexure and steady flow synergistically promote engineered heart valve tissue production via OSS, so long as the oscillations are accompanied by a critical magnitude of shear stress. In addition, our simulations showed that mass transport of glucose and oxygen is enhanced by sample movement at low sample porosities, but did not play a role in highly porous scaffolds. Preliminary in-house in vitro experiments showed that cell proliferation and phenotype is enhanced in OSI-:τ: environments.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expertise in physics has been traditionally studied in cognitive science, where physics expertise is understood through the difference between novice and expert problem solving skills. The cognitive perspective of physics experts only create a partial model of physics expertise and does not take into account the development of physics experts in the natural context of research. This dissertation takes a social and cultural perspective of learning through apprenticeship to model the development of physics expertise of physics graduate students in a research group. I use a qualitative methodological approach of an ethnographic case study to observe and video record the common practices of graduate students in their biophysics weekly research group meetings. I recorded notes on observations and conduct interviews with all participants of the biophysics research group for a period of eight months. I apply the theoretical framework of Communities of Practice to distinguish the cultural norms of the group that cultivate physics expert practices. Results indicate that physics expertise is specific to a topic or subfield and it is established through effectively publishing research in the larger biophysics research community. The participant biophysics research group follows a learning trajectory for its students to contribute to research and learn to communicate their research in the larger biophysics community. In this learning trajectory students develop expert member competencies to learn to communicate their research and to learn the standards and trends of research in the larger research community. Findings from this dissertation expand the model of physics expertise beyond the cognitive realm and add the social and cultural nature of physics expertise development. This research also addresses ways to increase physics graduate student success towards their PhD. and decrease the 48% attrition rate of physics graduate students. Cultivating effective research experiences that give graduate students agency and autonomy beyond their research groups gives students the motivation to finish graduate school and establish their physics expertise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Walking is the most basic form of transportation. A good understanding of pedestrian’s dynamics is essential in meeting the mobility and accessibility needs of people by providing a safe and quick walking flow. Advances in the dynamics of pedestrians in crowds are of great theoretical and practical interest, as they lead to new insights regarding the planning of pedestrian facilities, crowd management, or evacuation analysis. As a physicist, I would like to put forward some additional theoretical and practical contributions that could be interesting to explore, regarding the perspective of physics on about human crowd dynamics (panic as a specific form of behavior excluded).