951 resultados para Objective visual acuity
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was conducted to investigate how visually impaired people perform distance estimation tasks by movement and navigation during deprivation of effective perceptual and proprioceptive information. For that they performed the task of walking three distances, being the first and second of 100 meters and the third of 140 meters (triangulation) from a point of origin in open field on a inverted L shaped trajectory and then returning to the origin. The first and second tasks were driven by means of a guide with GPS adapted to the study coordinates, and the third one was freeform with three sessions, the first without perceptual and proprioceptive restrictions, the second without auditory perception, and the third in a wheelchair, without proprioception. The objective of this study was to indicate the differences in distance reproduction in relation to accuracy and investigate the spatial representation of participants in a navigation task, in which there is active movement, but no effective perceptual and proprioceptive information. Results showed that the average participants underestimated distances producing average angles close to the value of 45°. And by means of the "t" students test no significant differences between subjects can be pointed out. To achieve these results we used remote monitoring by GPS and software TrackMaker.
Resumo:
Pós-graduação em Design - FAAC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this paper is compare the common traffic lights (CTL) to three different types of traffic lights with countdown displays (SCD) and assess their effects on road safety and capacity. This comparison is required because the results found in the literature are divergent among countries and cities, and one of the SCD analyzed in our study is different from the SCD used worldwide. An observational before-after study was conducted to evaluate the safety and capacity in a period of one year before and one year after the implementation of the SCD in three Brazilian cities. The results indicate that the SCD models 1 and 3 had around 35%±14% reduction in the total number of accidents; the model 2, does not have significant reduction. In order to perform the capacity analysis a framework for data collection and an adaptation for estimation of initial lost time in each phase were developed. Considering the capacity analysis there was a reduction around 11% in the lost time in SCD model 1, 7% in SCD model 2 and 3% in SCD model 3. However the implications of this on capacity are trifle due to a small increase in the average headways for all SCD models compare to CTL.
Resumo:
Postural sway variability was evaluated in Parkinson’s disease (PD) patients at different stages of disease. Twenty PD patients were grouped into two groups (unilateral, 14; bilateral, 6) according to disease severity. The results showed no significant differences in postural sway variability between the groups (p ≥ 0.05). Postural sway variability was higher in the antero-posterior direction and with the eyes closed. Significant differences between the unilateral and bilateral groups were observed in clinical tests (UPDRS, Berg Balance Scale, and retropulsion test; p ≤ 0.05, all). Postural sway variability was unaffected by disease severity, indicating that neurological mechanisms for postural control still function at advanced stages of disease. Postural sway instability appears to occur in the antero-posterior direction to compensate for the stooped posture. The eyes-closed condition during upright stance appears to be challenging for PD patients because of the associated sensory integration deficit. Finally, objective measures such as postural sway variability may be more reliable than clinical tests to evaluate changes in balance control in PD patients.
Resumo:
Pós-graduação em Artes - IA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: To evaluate whether there are visual and neurophysical decrements in workers with low exposure to Hg vapor. Methods: Visual fields, contrast sensitivity, color vision, and neuropsychological functions were measured in 10 workers (32.5 +/- 8.5 years) chronically exposed to Hg vapor (4.3 +/- 2.8 years; urinary Hg concentration 22.3 +/- 9.3 mu g/g creatinine). Results: For the worst eyes, we found altered visual field thresholds, lower contrast sensitivity, and color discrimination compared with controls (P < 0.05). There were no significant differences between Hg-exposed subjects and controls on. neuropsychological tests. Nevertheless, duration of exposure was statistically correlated to verbal memory and depression scores. Conclusions: Chronic exposure to Hg vapor at currently accepted safety levels was found to be associated with visual losses but not with neuropsychological dysfunctions in the sample of workers studied. (J Occup Environ Med. 2009,51:1403-1412)
Resumo:
Amazonian gold mining activity results in human exposure to mercury vapor. We evaluated the visual system of two Amazonian gold miners (29 and 37 years old) by recording the transient pattern electroretinogram (tPERG) and transient pattern visual evoked potential (tPVEP). We compared these results with those obtained from a regional group of control subjects. For both tPERG and tPVEP, checkerboards with 0.5 or 2 cycles per degree (cpd) of spatial frequency were presented in a 16 degrees squared area, 100% Michelson contrast, 50cd/m(2) mean luminance, and 1 Hz square-wave pattern-reversal presentation. Two averaged waveforms (n = 240 sweeps, Is each) were monocularly obtained for each subject in each condition. Both eyes were monocularly tested only in gold miners. Normative data were calculated using a final pooled waveforin with 480 sweeps. The first gold miner, LCS, had normal tPERG responses. The second one, RNP, showed low tPERG (P50 component) amplitudes at 0.5cpd for both eyes, outside the normative data, and absence of response at 2 cpd for his right eye. Delayed tPVEP responses (P 100 component) were found at 2 cpd for LCS but the implicit times were inside the normative data. Subject RNP also showed delayed tPVEP responses (all components), but only the implicit time obtained with his right eye was outside the normative data at 2cpd. We conclude that mercury exposure levels found in the Amazon gold miners is high enough to damage the visual system and can be assessed by non-invasive electrophysiological techniques. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Este estudo teve como objetivo construir e conhecer os parâmetros psicométricos de um instrumento para análise da percepção visual de adultos. Para a construção da escala participaram 295 adultos saudáveis, sem déficits cognitivos ou perceptivo-visuais. Nesta etapa foi formulada uma escala tetrafatorial constituída por 20 itens que avaliam quatro dimensões referentes à percepção visual: constância da forma, figurafundo, posição e relação espacial. Para obter evidências de validade foi utilizada uma amostra de 183 voluntários com boa saúde física e mental e acuidade visual normal ou corrigida. Os dados obtidos relatam a existência de concordância interjuízes, adequação semântica e significância no teste-reteste do instrumento. Os coeficientes de fidedignidade variaram de 0,84 a 0,93. Os quatro fatores esperados foram encontrados, cada um contendo 5 itens, e juntos explicaram 57,52% da variância do constructo. O instrumento apresentou parâmetros psicométricos adequados, o que pode justificar sua utilidade em pesquisas básicas e na prática clínica.
Resumo:
OBJECTIVE: The aim of this study was to assess the subjective visual vertical in patients with bilateral vestibular dysfunction and to propose a new method to analyze subjective visual vertical data in these patients. METHODS: Static subjective visual vertical tests were performed in 40 subjects split into two groups. Group A consisted of 20 healthy volunteers, and Group B consisted of 20 patients with bilateral vestibular dysfunction. Each patient performed six measurements of the subjective visual vertical test, and the mean values were calculated and analyzed. RESULTS: Analyses of the numerical values of subjective visual vertical deviations (the conventional method of analysis) showed that the mean deviation was 0.326 +/- 1.13 degrees in Group A and 0.301 +/- 1.87 degrees in Group B. However, by analyzing the absolute values of the subjective visual vertical (the new method of analysis proposed), the mean deviation became 1.35 +/- 0.48 degrees in Group A and 2.152 +/- 0.93 degrees in Group B. The difference in subjective visual vertical deviations between groups was statistically significant (p < 0.05) only when the absolute values and the range of deviations were considered. CONCLUSION: An analysis of the absolute values of the subjective visual vertical more accurately reflected the visual vertical misperception in patients with bilateral vestibular dysfunction.
Resumo:
Flicker is a power quality phenomenon that applies to cycle instability of light intensity resulting from supply voltage fluctuation, which, in turn can be caused by disturbances introduced during power generation, transmission or distribution. The standard EN 61000-4-15 which has been recently adopted also by the IEEE as IEEE Standard 1453 relies on the analysis of the supply voltage which is processed according to a suitable model of the lamp – human eye – brain chain. As for the lamp, an incandescent 60 W, 230 V, 50 Hz source is assumed. As far as the human eye – brain model is concerned, it is represented by the so-called flicker curve. Such a curve was determined several years ago by statistically analyzing the results of tests where people were subjected to flicker with different combinations of magnitude and frequency. The limitations of this standard approach to flicker evaluation are essentially two. First, the provided index of annoyance Pst can be related to an actual tiredness of the human visual system only if such an incandescent lamp is used. Moreover, the implemented response to flicker is “subjective” given that it relies on the people answers about their feelings. In the last 15 years, many scientific contributions have tackled these issues by investigating the possibility to develop a novel model of the eye-brain response to flicker and overcome the strict dependence of the standard on the kind of the light source. In this light of fact, this thesis is aimed at presenting an important contribution for a new Flickermeter. An improved visual system model using a physiological parameter that is the mean value of the pupil diameter, has been presented, thus allowing to get a more “objective” representation of the response to flicker. The system used to both generate flicker and measure the pupil diameter has been illustrated along with all the results of several experiments performed on the volunteers. The intent has been to demonstrate that the measurement of that geometrical parameter can give reliable information about the feeling of the human visual system to light flicker.
Resumo:
Generic object recognition is an important function of the human visual system and everybody finds it highly useful in their everyday life. For an artificial vision system it is a really hard, complex and challenging task because instances of the same object category can generate very different images, depending of different variables such as illumination conditions, the pose of an object, the viewpoint of the camera, partial occlusions, and unrelated background clutter. The purpose of this thesis is to develop a system that is able to classify objects in 2D images based on the context, and identify to which category the object belongs to. Given an image, the system can classify it and decide the correct categorie of the object. Furthermore the objective of this thesis is also to test the performance and the precision of different supervised Machine Learning algorithms in this specific task of object image categorization. Through different experiments the implemented application reveals good categorization performances despite the difficulty of the problem. However this project is open to future improvement; it is possible to implement new algorithms that has not been invented yet or using other techniques to extract features to make the system more reliable. This application can be installed inside an embedded system and after trained (performed outside the system), so it can become able to classify objects in a real-time. The information given from a 3D stereocamera, developed inside the department of Computer Engineering of the University of Bologna, can be used to improve the accuracy of the classification task. The idea is to segment a single object in a scene using the depth given from a stereocamera and in this way make the classification more accurate.