924 resultados para OXIDIZED PHOSPHOLIPIDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen`s antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutaredoxins (Grxs) are small (9-12 kDa) heat-stable proteins that are ubiquitously distributed. In Saccharomyces cerevisiae, seven Grx enzymes have been identified. Two of them (yGrx1 and yGrx2) are dithiolic, possessing a conserved Cys-Pro-Tyr-Cys motif. Here, we show that yGrx2 has a specific activity 15 times higher than that of yGrx1, although these two oxidoreductases share 64% identity and 85% similarity with respect to their amino acid sequences. Further characterization of the enzymatic activities through two-substrate kinetics analysis revealed that yGrx2 possesses a lower Km for glutathione and a higher turnover than yGrx1. To better comprehend these biochemical differences, the pK(a) of the N-terminal active-site cysteines (Cys27) of these two proteins and of the yGrx2-C30S mutant were determined. Since the pK(a) values of the yGrx1 and yGix2 Cys27 residues are very similar, these parameters cannot account for the difference observed between their specific activities. Therefore, crystal structures of yGrx2 in the oxidized form and with a glutathionyl mixed disulfide were determined at resolutions of 2.05 and 1.91 angstrom, respectively. Comparisons of yGrx2 structures with the recently determined structures of yGrx1 provided insights into their remarkable functional divergence. We hypothesize that the substitutions of Ser23 and Gln52 in yGrx1 by Ala23 and Glu52 in yGrx2 modify the capability of the active-site C-terminal cysteine to attack the mixed disulfide between the N-terminal active-site cysteine and the glutathione molecule. Mutagenesis studies supported this hypothesis. The observed structural and functional differences between yGrx1 and yGrx2 may reflect variations in substrate specificity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fatty acids have been used in marine biogeochemistry as food chain biomarkers, but in freshwater these studies are rare. In order to evaluate the fatty acid potential as biomarkers in freshwater, their profile was analyzed during vitellogenesis in two fish species, in both waterfall and reservoir environments of the Paraiba do Sul River Basin. Detrivorous Hypostomus affinis and omnivorous Geophagus brasiliensis seem to elongate and desaturate polyunsaturated fatty acids (PUFA) and transfer them to the ovaries` phospholipids. Waterfall Geophagus brasiliensis have more highly unsaturated fatty acids in the liver, but in the reservoir, accumulation mainly occurs in muscle and ovary triglycerides, suggesting trophic opportunism and a plasticity during vitellogenesis. In Hypostomus affinis, PUFA alteration occurs only in the reservoir, suggesting a high phytoplankton occurrence. Eutrophication and water speed is reflected in Hypostomus affinis ovaries by higher PUFAn3 and bacterial fatty acids. As in marine environments, analysis of mono- and polyunsaturated fatty acids during vitellogenesis can be used as a tool in food chain studies in freshwater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the oxidative stress influence in some prosurvival and proapoptotic proteins after myocardial infarction (MI). Male Wistar rats were divided in two groups: Sham-operated (control) and MI. MI was induced by left coronary artery occlusion. 28-days after surgery, echocardiographic, morphometric, and hemodynamic parameters were evaluated. Redox status (reduced to oxidized glutathione ratio, GSH/GSSG) and hydrogen peroxide levels (H(2)O(2)) were measured in heart tissue. The p-ERK/ERK, p-Akt/Akt, p-mTOR/mTOR and p-GSK-3 beta/GSK-3 beta ratios, as well as apoptosis-inducing factor (AIF) myocardial protein expression were quantified by Western blot. MI group showed an increase in cardiac hypertrophy (23%) associated with a decrease in ejection fraction (38%) and increase in left ventricular end-diastolic pressure (82%) when compared to control, characterizing ventricular dysfunction. Redox status imbalance was seen in MI animals, as evidenced by the decrease in the GSH/GSSG ratio (30%) and increased levels of H(2)O(2) (45%). This group also showed an increase in the ERK phosphorylation and a reduction of Akt and mTOR phosphorylation when compared to control. Moreover, we showed a reduction in the GSK-3 beta phosphorylation and an increase in AIF protein expression in MI group. Taken together, our results show increased H(2)O(2) levels and cellular redox imbalance associated to a higher p-ERK and AIF immunocontent, which would contribute to a maladaptive hypertrophy phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of unbound palmitic acid (PA) at plasma physiological concentration range on reactive oxygen species (ROS) production by cultured rat skeletal muscle cells was investigated. The participation of the main sites of ROS production was also examined. Production of ROS was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. PA increased ROS production after 1 h incubation. A xanthine oxidase inhibitor did not change PA-induced ROS production. However, the treatment with a mitochondrial uncoupler and mitochondrial complex III inhibitor decreased superoxide production induced by PA. The importance of mitochondria was also evaluated in 1 h incubated rat soleus and extensor digitorum longus (EDL) muscles. Soleus muscle, which has a greater number of mitochondria than EDL, showed a higher superoxide production induced by PA. These results indicate that mitochondrial electron transport chain is an important contributor for superoxide formation induced by PA in skeletal muscle. Results obtained with etomoxir and bromopalmitate treatment indicate that PA has to be oxidized to raise ROS production. A partial inhibition of superoxide formation induced by PA was observed by treatment with diphenylene iodonium, an inhibitor of NADPH oxidase. The participation of this enzyme complex was confirmed through an increase of p47(phox) phosphorylation after treatment with PA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eumenitin, a novel cationic antimicrobial peptide from the venom of solitary wasp Eumenes rubronotatus, was characterized by its effects on black lipid membranes of negatively charged (azolectin) and zwitterionic (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or DPhPC-cholesterol) phospholipids: surface potential changes, single-channel activity, ion selectivity, and pore size were studied. We found that eumenitin binds preferentially to charged lipid membranes as compared with zwitterionic ones. Eumenitin is able to form pores in azolectin (G(1) = 118.00 +/- 3.67 pS or G(2) = 160.00 +/- 7.07 pS) and DPhPC membranes (G = 61.13 +/- 7.57 pS). Moreover, cholesterol addition to zwitterionic DPhPC membranes inhibits pore formation activity but does not interfere with the binding of peptide. Open pores presented higher cation (K (+)) over anion (Cl-) selectivity. The pore diameter was estimated at between 8.5and 9.8 angstrom in azolectin membranes and about 4.3 angstrom in DPhPC membranes. The results are discussed based on the toroidal pore model for membrane pore-forming activity and ion selectivity. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies have shown that lipids are transferred from lymphocytes (Ly) to different cell types including macrophages. enterocytes, and pancreatic beta cells in co-culture This study investigated whether [(14)C]-labeled fatty acids (FA) can be transferred from Ly to skeletal muscle (SM), and the effects of exercise on such phenomenon Ly obtained from exercised (EX) and control (C) male Wistar rats were preloaded with the [(14)C]-labeled free FA palmitic (PA), oleic (OA), linoleic (LA), or arachidonic (AA) Radioactively loaded Ly were then co-cultured with SM from the same Ly donor animals Substantial amounts of FA were transferred to SM being the profile PA = OA > AA > LA to the C group. and PA > OA > LA > AA to the EX group These FA were incorporated predominantly as phospholipids (PA = 66 75%: OA = 63 09%, LA = 43 86%, AA - 47 40%) in the C group and (PA = 63 99% OA = 52 72%, LA = 55 99%, AA = 63 40%) in the EX group Also in this group, the remaining radioactivity from AA, LA, and OA acids was mainly incorpoiated in structural and energetic lipids These results support the hypothesis that Ly are able to export lipids to SM in co-culture Furthermore. exercise modulates the lipid transference profile, and its incorporation on SM The overall significance of this phenomenon in vivo remains to be elucidated. Copyright (C) 2010 John Wiley & Sons, Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibitory effect of supraphysiological iodide concentrations on thyroid hormone synthesis (Wolff - Chaikoff effect) and on thyrocyte proliferation is largely known as iodine autoregulation. However, the molecular mechanisms by which iodide modulates thyroid function remain unclear. In this paper, we analyze the transcriptome profile of the rat follicular cell lineage PCCl3 under untreated and treated conditions with 10 (- 3) M sodium iodide (NaI). Serial analysis of gene expression (SAGE) revealed 84 transcripts differentially expressed in response to iodide (p <= 0.001). We also showed that iodide excess inhibits the expression of essential genes for thyroid differentiation: Tshr, Nis, Tg, and Tpo. Relative expression of 14 of 20 transcripts selected by SAGE was confirmed by real-time PCR. Considering the key role of iodide organification in thyroid physiology, we also observed that both the oxidized form of iodide and iodide per se are responsible for gene expression modulation in response to iodide excess. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is a thiol-rich metallopeptidase ubiquitously distributed in mammalian tissues and involved in oligopeptide metabolism both within and outside cells. Fifteen Cys residues are present in the rat EP24.15 protein, seven are solvent accessible, and two are found inside the catalytic site cleft; no intraprotein disulfide is described. In the present investigation, we show that mammalian immunoprecipitated EP24.15 is S-glutathionylated. In vitro EP24.15 S-glutathionylation was demonstrated by the incubation of bacterial recombinant EP24.15 with oxidized glutathione concentration as low as 10 mu M. The in vitro S-glutathionylation of EP24.15 was responsible for its oxidative oligomerization to dimer and trimer complexes. EP24.15 immunoprecipitated from cells submitted to oxidative challenge showed increased trimeric forms and decreased S-glutathionylation compared to immunoprecipitated protein from control cells. Our present data also show that EP24.15 maximal enzymatic activity is maintained by partial S-glutathionylation, a mechanism that apparently regulates the protein oligomerization. Present results raise the possibility of an unconventional property of protein S-glutathionylation, inducing oligomerization by interprotein thiol-disulfide exchange. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scavenger or Fc gamma receptors are important for capture and clearance of modified LDL particles by monocytes/macrophages. Uptake via scavenger receptors is not regulated by intracellular levels of cholesterol and in consequence, macrophages develop into foam cells in the arterial intima. The levels of scavenger receptor CD36 are increased in atherosclerotic lesions and there is evidence that some components of oxLDL auto-regulate the expression of this receptor. Fc gamma receptor expression is increased in cardiovascular diseases but it is not known weather their expression is regulated by oxLDL. The biological properties of oxLDLs vary depending on the degree of oxidation. In the present study we investigated the effect of LDL particles showing extensive or low oxidation (HoxLDL and LoxLDL) on the expression of CD36 and Fc gamma RII in a human monocytic cell line (THP-1), differentiated or not to macrophage, and the involvement of PPAR gamma. It was found that both forms of oxLDL are able to increase the expression of CD36 and Fc gamma RII and that this effect is dependent on the degree of oxidation and of the stage of cell differentiation ( monocyte or macrophage). We also showed that the increased expression of Fc gamma RII is dependent on PPAR. whereas that of the CD36 is independent of PPAR gamma. Copyright (c) 2008 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uptake of oxLDL by CD36 is not regulated by intracellular levels of cholesterol, leading to macrophage differentiation into foam cells which play a major role in atherosclerosis. Furthermore, oxLDL competes with PAF in macrophages for binding to PAF receptors (PAFR). Here we investigated the involvement of PAFR in CD36 expression and uptake of oxLDL by human monocytes/macrophages. Adherent peripheral blood mononuclear cells were treated with PAFR-antagonists (WEB2170, CV3988); inhibitors of ERK1/2 (PD98059), p38 (SB203580), JNK (SP600125) or diluents, before stimulation with oxLDL or PAF. After 24 h, uptake of FITC oxLDL and expression of CD36 was determined by flow cytometry and phosphorylation of MAP-kinases by Western blot. It was shown that the uptake of oxLDL was reduced by PAFR antagonists. CD36 expression was up-regulated by oxLDL, an effect reversed by PAFR antagonists. The up-regulation of CD36 and oxLDL uptake both required MAP-kinases activation. The oxLDL induced ERK1/2 and JNK but not p38 phosphorylation was reversed by PAFR-antagonists suggesting that oxLDL signalling involves PAFR dependent and independent pathways. In macrophages from PAFR(-/-) mice, oxLDL was unable to up-regulate CD36 expression and the oxLDL uptake was reduced compared to wild type. These results suggest that oxLDL interacts with PAFR in macrophages to increase CD36 expression and oxLDL uptake. Whereas pharmacological intervention at the level of PAFR would be beneficial in atherosclerosis remains to be determined. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monocytes/macrophages and lymphocytes have a key role in the pathogenesis of atherosclerosis through the production of inflammatory and anti-inflammatory cytokines. We evaluated mRNA expression and protein production of CCL2, CXCL8, CXCL9, CXCL10, IFN-gamma and IL-10 in vitro as well as the expression of the CCR2 and CXCR3 receptors in peripheral blood mononuclear cells (PBMCs) of patients with coronary artery disease (CAD) and healthy controls in the presence or absence of oxidized LDL (oxLDL). Patients with CAD showed higher constitutive expression of CCL2, CXCL8, CXCL9, CXCL10 and IFN-gamma mRNA and, after stimulation with oxLDL, higher expression of CCL2 and CXCL8 mRNA than the control group. We also detected higher levels of CCL2 and CXCL8 in supernatants of oxLDL-stimulated PBMCs from CAD patients than in corresponding supernatants from controls. Patients with CAD had a higher percentage of constitutive CCR2(+) and CXCR3(+) cells after stimulation with oxLDL. Among CAD patients, the main differences between the stable (SA) and unstable angina (UA) groups were lower IL-10 mRNA production in the latter group. Altogether, our data suggest that PBMCs from CAD patients are able to produce higher concentrations of chemokines and cytokines involved in the regulation of monocyte and lymphocyte migration and retention in atherosclerotic lesions. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most organisms that grow in the presence of oxygen possess catalases and/or peroxidases, which are necessary for scavenging the H(2)O(2) produced by aerobic metabolism. In this work we investigate the pathways that regulate the Caulobacter crescentus katG gene, encoding the only enzyme with catalase-peroxidase function in this bacterium. The transcriptional start site of the katG gene was determined, showing a short 5` untranslated region. The katG regulatory region was mapped by serial deletions, and the results indicate that there is a single promoter, which is responsible for induction at stationary phase. An oxyR mutant strain was constructed; it showed decreased katG expression, and no KatG protein or catalase-peroxidase activity was detected in stationary-phase cell extracts, implying that OxyR is the main positive regulator of the C. crescentus katG gene. Purified OxyR protein bound to the katG regulatory region between nucleotides -42 and -91 from the transcription start site, as determined by a DNase I footprinting assay, and a canonical OxyR binding site was found in this region. Moreover, OxyR binding was shown to be redox dependent, given that only oxidized proteins bound adjacent to the -35 sequence of the promoter and the katG P1 promoter was activated by OxyR in an H(2)O(2)-dependent manner. On the other hand, this work showed that the iron-responsive regulator Fur does not regulate C. crescentus katG, since a fur mutant strain presented wild-type levels of katG transcription and catalase-peroxidase production and activity, and the purified Fur protein was not able to bind to the katG regulatory region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade, there has been renewed interest in biologically active peptides in fields like allergy, autoimmume diseases and antibiotic therapy. Mast cell degranulating peptides mimic G-protein receptors, showing different activity levels even among homologous peptides. Another important feature is their ability to interact directly with membrane phospholipids, in a fast and concentration-dependent way. The mechanism of action of peptide HR1 on model membranes was investigated comparatively to other mast cell degranulating peptides (Mastoparan, Eumenitin and Anoplin) to evidence the features that modulate their selectivity. Using vesicle leakage, single-channel recordings and zeta-potential measurements, we demonstrated that HR1 preferentially binds to anionic bilayers, accumulates, folds, and at very low concentrations, is able to insert and create membrane spanning ion-selective pores. We discuss the ion selectivity character of the pores based on the neutralization or screening of the peptides charges by the bilayer head group charges or dipoles. (C) 2009 Elsevier Inc. All rights reserved.