Structural Aspects of the Distinct Biochemical Properties of Glutaredoxin 1 and Glutaredoxin 2 from Saccharomyces cerevisiae


Autoria(s): DISCOLA, Karen Fulan; OLIVEIRA, Marcos Antonio de; CUSSIOL, Jose Renato Rosa; MONTEIRO, Gisele; BARCENA, Jose Antonio; PORRAS, Pablo; PADILLA, C. Alicia; GUIMARAES, Beatriz Gomes; SOARES NETTO, Luis Eduardo
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

Glutaredoxins (Grxs) are small (9-12 kDa) heat-stable proteins that are ubiquitously distributed. In Saccharomyces cerevisiae, seven Grx enzymes have been identified. Two of them (yGrx1 and yGrx2) are dithiolic, possessing a conserved Cys-Pro-Tyr-Cys motif. Here, we show that yGrx2 has a specific activity 15 times higher than that of yGrx1, although these two oxidoreductases share 64% identity and 85% similarity with respect to their amino acid sequences. Further characterization of the enzymatic activities through two-substrate kinetics analysis revealed that yGrx2 possesses a lower Km for glutathione and a higher turnover than yGrx1. To better comprehend these biochemical differences, the pK(a) of the N-terminal active-site cysteines (Cys27) of these two proteins and of the yGrx2-C30S mutant were determined. Since the pK(a) values of the yGrx1 and yGix2 Cys27 residues are very similar, these parameters cannot account for the difference observed between their specific activities. Therefore, crystal structures of yGrx2 in the oxidized form and with a glutathionyl mixed disulfide were determined at resolutions of 2.05 and 1.91 angstrom, respectively. Comparisons of yGrx2 structures with the recently determined structures of yGrx1 provided insights into their remarkable functional divergence. We hypothesize that the substitutions of Ser23 and Gln52 in yGrx1 by Ala23 and Glu52 in yGrx2 modify the capability of the active-site C-terminal cysteine to attack the mixed disulfide between the N-terminal active-site cysteine and the glutathione molecule. Mutagenesis studies supported this hypothesis. The observed structural and functional differences between yGrx1 and yGrx2 may reflect variations in substrate specificity. (C) 2008 Elsevier Ltd. All rights reserved.

FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq Conselho Nacional de Desen-volvimento Cientifico e Tecnologico

Brazilian Synchrotron Light Laboratory (LNLS)

Brazilian Synchrotron Light Laboratory (LNLS)[D03B-1795]

Spanish MCyT Ministerio de Ciencia Y Tecnologia

Spanish MCyT Ministerio de Ciencia Y Tecnologia[BFU2006-02990]

Identificador

JOURNAL OF MOLECULAR BIOLOGY, v.385, n.3, p.889-901, 2009

0022-2836

http://producao.usp.br/handle/BDPI/27662

10.1016/j.jmb.2008.10.055

http://dx.doi.org/10.1016/j.jmb.2008.10.055

Idioma(s)

eng

Publicador

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD

Relação

Journal of Molecular Biology

Direitos

restrictedAccess

Copyright ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD

Palavras-Chave #glutaredoxin #Saccharomyces cerevisiae #glutathione #disulfide #X-ray structure #ESCHERICHIA-COLI GLUTAREDOXIN #ACTIVE-SITE CYSTEINES #MIXED DISULFIDE #MOLECULAR REPLACEMENT #ENZYMATIC MECHANISM #MAXIMUM-LIKELIHOOD #GLUTATHIONE #THIOLTRANSFERASE #PROTEIN #THIOREDOXIN #Biochemistry & Molecular Biology
Tipo

article

original article

publishedVersion