960 resultados para Nonlinear dynamic analysis
Resumo:
A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed
Resumo:
Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of distinct brain regions has revealed meaningful organization of spontaneous fluctuations in the resting brain. However, an increasing amount of evidence points to non-stationarity of FC; i.e., FC dynamically changes over time reflecting additional and rich information about brain organization, but representing new challenges for analysis and interpretation. Here, we propose a data-driven approach based on principal component analysis (PCA) to reveal hidden patterns of coherent FC dynamics across multiple subjects. We demonstrate the feasibility and relevance of this new approach by examining the differences in dynamic FC between 13 healthy control subjects and 15 minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain dynamic FC of regionally-averaged BOLD activity using sliding time windows. We then used PCA to identify FC patterns, termed "eigenconnectivities", that reflect meaningful patterns in FC fluctuations. We then assessed the contributions of these patterns to the dynamic FC at any given time point and identified a network of connections centered on the default-mode network with altered contribution in patients. Our results complement traditional stationary analyses, and reveal novel insights into brain connectivity dynamics and their modulation in a neurodegenerative disease.
Resumo:
The analysis of multi-modal and multi-sensor images is nowadays of paramount importance for Earth Observation (EO) applications. There exist a variety of methods that aim at fusing the different sources of information to obtain a compact representation of such datasets. However, for change detection existing methods are often unable to deal with heterogeneous image sources and very few consider possible nonlinearities in the data. Additionally, the availability of labeled information is very limited in change detection applications. For these reasons, we present the use of a semi-supervised kernel-based feature extraction technique. It incorporates a manifold regularization accounting for the geometric distribution and jointly addressing the small sample problem. An exhaustive example using Landsat 5 data illustrates the potential of the method for multi-sensor change detection.
Resumo:
This article examines, in two Swiss cantons, the interdependence from a medical care point of view of various regions (health planning zones in one canton, political districts in the other). The volume and the destination of patient referrals prescribed by physicians in ambulatory practice are analyzed. The available data (on 1609 referrals) were gathered by the practitioners themselves, during a National Ambulatory Medical Care Survey type study in February-March 1981, in which 203 physicians participated. Several indicators are proposed (including an integration coefficient and an attraction coefficient for each zone); they show marked differences among the regions. This dynamic approach, based on the effective behavior of physicians, appears to be of major interest for health planning purposes (as compared with the frequent practice to use mainly parameters in relation with the availability of care services--the "supply"--numbers of professionals and/or health facilities).
Resumo:
BACKGROUND: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. RESULTS: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called "RodCellJ", allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. CONCLUSIONS: "RodCell" is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. AVAILABILITY: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the publication).
Resumo:
It is well established that Notch signaling plays a critical role at multiple stages of T cell development and activation. However, detailed analysis of the cellular and molecular events associated with Notch signaling in T cells is hampered by the lack of reagents that can unambiguously measure cell surface Notch receptor expression. Using novel rat mAbs directed against the extracellular domains of Notch1 and Notch2, we find that Notch1 is already highly expressed on common lymphoid precursors in the bone marrow and remains at high levels during intrathymic maturation of CD4(-)CD8(-) thymocytes. Notch1 is progressively down-regulated at the CD4(+)CD8(+) and mature CD4(+) or CD8(+) thymic stages and is expressed at low levels on peripheral T cells. Immunofluorescence staining of thymus cryosections further revealed a localization of Notch1(+)CD25(-) cells adjacent to the thymus capsule. Notch1 was up-regulated on peripheral T cells following activation in vitro with anti-CD3 mAbs or infection in vivo with lymphocytic chorio-meningitis virus or Leishmania major. In contrast to Notch1, Notch2 was expressed at intermediate levels on common lymphoid precursors and CD117(+) early intrathymic subsets, but disappeared completely at subsequent stages of T cell development. However, transient up-regulation of Notch2 was also observed on peripheral T cells following anti-CD3 stimulation. Collectively our novel mAbs reveal a dynamic regulation of Notch1 and Notch2 surface expression during T cell development and activation. Furthermore they provide an important resource for future analysis of Notch receptors in various tissues including the hematopoietic system.
Resumo:
Tonoplast-enriched membranes were prepared from maize (Zea mays L. cv LG 11) primary roots, using sucrose nonlinear gradients. The functional molecular size of the tonoplast ATP-and PPi-dependent proton pumps were analyzed by radiation inactivation. Glucose-6-phosphate dehydrogenase (G6PDH) was added as an internal standard. Frozen samples (-196 degrees C) of the membranes were irradiated with (60)Co for different periods of time. After thawing the samples, the activities of G6PDH, ATPase, and PPase were tested. By applying target theory, the functional sizes of the ATPase and PPase in situ were found to be around 540 and 160 kilodaltons, respectively. The two activities were solubilized and separated by gel filtration chromatography. The different polypeptides copurifying with the two pumps were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two bands (around 59 and 65 kilodaltons) were associated with the ATPase activity, whereas a double band (around 40 kilodaltons) was recovered with the PPase activity.
Resumo:
Richer and healthier agents tend to hold riskier portfolios and spend proportionally less on health expenditures. Potential explanations include health and wealth effects on preferences, expected longevity or disposable total wealth. Using HRS data, we perform a structural estimation of a dynamic model of consumption, portfolio and health expenditure choices with recursive utility, as well as health-dependent income and mortality risk. Our estimates of the deep parameters highlight the importance of health capital, mortality risk control, convex health and mortality adjustment costs and binding liquidity constraints to rationalize the stylized facts. They also provide new perspectives on expected longevity and on the values of life and health.
Resumo:
Tone Mapping is the problem of compressing the range of a High-Dynamic Range image so that it can be displayed in a Low-Dynamic Range screen, without losing or introducing novel details: The final image should produce in the observer a sensation as close as possible to the perception produced by the real-world scene. We propose a tone mapping operator with two stages. The first stage is a global method that implements visual adaptation, based on experiments on human perception, in particular we point out the importance of cone saturation. The second stage performs local contrast enhancement, based on a variational model inspired by color vision phenomenology. We evaluate this method with a metric validated by psychophysical experiments and, in terms of this metric, our method compares very well with the state of the art.
Resumo:
Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.
Resumo:
This paper is aimed at exploring the determinants of female activity from a dynamic perspective. An event-history analysis of the transition form employment to housework has been made resorting to data from the European Household Panel Survey. Four countries representing different welfare regimes and, more specifically, different family policies, have been selected for the analysis: Britain, Denmark, Germany and Spain. The results confirm the importance of individual-level factors, which is consistent with an economic approach to female labour supply. Nonetheless, there are significant cross-national differences in how these factors act over the risk of abandoning the labour market. First, the number of trnasitions is much lower among Danish working women than among British, German or Spanish ones, revealing the relative importance of universal provision of childcare services, vis-à-vis other elements of the family policy, as time or money.
Resumo:
Abstract Consideration of consumers’ demand for food quality entails several aspects. Quality itself is a complex and dynamic concept, and constantly evolving technical progress may cause changes in consumers’ judgment of quality. To improve our understanding of the factors influencing the demand for quality, food quality must be defined and measured from the consumer’s perspective (Cardello, 1995). The present analysis addresses the issue of food quality, focusing on pork—the food that respondents were concerned about. To gain insight into consumers’ demand, we analyzed their perception and evaluation and focused on their cognitive structures concerning pork quality. In order to more fully account for consumers’ concerns about the origin of pork, in 2004 we conducted a consumer survey of private households. The qualitative approach of concept mapping was used to uncover the cognitive structures. Network analysis was applied to interpret the results. In order to make recommendations to enterprises, we needed to know what kind of demand emerges from the given food quality schema. By establishing the importance and relative positions of the attributes, we find that the country of origin and butcher may be the two factors that have the biggest influence on consumers’ decisions about the purchase of pork.
Resumo:
A procedure for the dynamic generation of 1,6-hexamethylene diisocyanate (HDI) aerosol atmospheres of 70 micrograms m-3 (0.01 ppm) to 1.75 mg m-3 (0.25 ppm), based on the precise control of the evaporation of pure liquid HDI and subsequent dilution with air, was developed. The apparatus consisted of a home-made glass nebulizer coupled with a separation stage to exclude non-respirable droplets (greater than 10 microns). The aerosol concentrations were achieved by passing air through the nebulizer at 1.5-4.5 l. min-1 to generate dynamically 0.01-0.25 ppm of diisocyanate in an experimental chamber of 8.55 m3. The distribution of the liquid aerosol was established with an optical counter and the diisocyanate concentration was determined from samples collected in impingers by a high-pressure liquid chromatographic method. The atmospheres generated were suitable for the evaluation both of sampling procedures full scale, and of analytical methods: at 140 micrograms m-3 (0.02 ppm) they remained stable for 15-min provocation tests in clinical asthma, as verified by breath-zone sampling of exposed patients.
Resumo:
Rock slope instabilities are implicitly linked to the supply of sediment and debris recharging channels prone to debris flow. Hence, the incorporation of bedrock structure and terrain morphology can be relevant in the analysis of sediment budget and debris flow hazard assessment. Here, the mode of debris production of the Manival catchment (northern French Alps) is documented by the study of its morphostructural aspects extracted from high resolution DEM. Terrain implication in the process of debris supply is evaluated by: a) A systematic classification of the major morphological units based on the slope gradient that enables a spatial analysis of zones of debris production and deposition. b) A detailed structural analysis performed on DEM in order to identify potential unstable slopes. c) An analysis of the gullies orientation that informs in term of structural control of the sources zones. d) Localisation of high density joints sets that document about whether sources of continuous debris production are controlled by the structural setting of the catchment. These DEM-based indicators can be used as proxies for assessing the influences of the current topography and enable to quantify a degree of susceptibility to mass wasting and hillslope erosion activity. This present contribution suggests some directions for characterizing sediment flux dynamic in small alpine catchment.
Resumo:
Perceptual maps have been used for decades by market researchers to illuminatethem about the similarity between brands in terms of a set of attributes, to position consumersrelative to brands in terms of their preferences, or to study how demographic and psychometricvariables relate to consumer choice. Invariably these maps are two-dimensional and static. Aswe enter the era of electronic publishing, the possibilities for dynamic graphics are opening up.We demonstrate the usefulness of introducing motion into perceptual maps through fourexamples. The first example shows how a perceptual map can be viewed in three dimensions,and the second one moves between two analyses of the data that were collected according todifferent protocols. In a third example we move from the best view of the data at the individuallevel to one which focuses on between-group differences in aggregated data. A final exampleconsiders the case when several demographic variables or market segments are available foreach respondent, showing an animation with increasingly detailed demographic comparisons.These examples of dynamic maps use several data sets from marketing and social scienceresearch.