952 resultados para Non-destructive testing, Seal Integrity, Packaging Quality
Resumo:
This work is a preliminary studio of the possibility of assess a relationship between solar radiation and watercore development on apple fruit, during maturation, using a non destructive method such as Magnetic Resonance Imaging (MRI). For such purpose, several low cost solar radiation sensors were designed for the trial and placed at 2 different heights (1.5 and 2.5 m) on 6 adult ?Esperiega? apple trees, in a commercial orchard in Ademuz (Valencia). Sensors were connected along 27 days, during the end of the growth period and start of the fruit maturation process, and radiation measurements of the a-Si sensors were recorded every 1 minute. At the end of this period, fruits from the upper and the lower part of the canopy of each tree were harvested. In all, 152 apples were collected and images with MRI. A Principal Component Analysis, perfomed over the histograms of the images, as well as segmentation methods were performed on the MR images in order to find a pattern involving solar radiation and watercore incidence.
Resumo:
tWatercore distribution inside apple fruit (block or radial), and its incidence (% of tissue) were relatedto the effect of solar radiation inside the canopy as measured by a set of low-cost irradiation sensors.221 samples were harvested in two seasons from the top and the bottom of the canopy and submittedto the non-invasive and non-destructive technique of magnetic resonance imaging (MRI) in order toobtain 20 inner tomography slices from each fruit and analyze the damaged areas using an interactive3D segmentation method. The number of fruit corresponding to each type of damage and the relevantpercentage were calculated and it was found that apples from the top of the tree were mainly of the radialtype (84%) and had more watercore (approx. 5% more) than apples from the bottom (65% radial). From theimage segmentation, the Euler number, a morphometric parameter, was extracted from the segmentedimages and related to the type of watercore symptoms. Apples with block watercore were grouped inEuler numbers between −400 and 400 with a small evolution. For apples with radial development, theEuler number was highly negative: up to −1439. Significant differences were also found regarding sugarcomposition, with higher fructose and total sugar contents in apples from the upper canopy, compared tothose in the lower canopy location. In the seasons studied (2011 and 2012), significantly higher sorbitoland lower sucrose and fructose contents were found in watercore-affected tissue compared to the healthytissue of affected apples and also compared to healthy apples.
Resumo:
Fruits of two varieties of both apples and pear were tested to measure their response to small energy impact applied by a impact tester with two spherical tips of different radious of curvature ( RA = 2.48 cm and RB = 0.98 cm) and equal mass were used. In the four varieties studied, the size of bruise was smaller with a spherical tip RA than with tip RB . The non-destructive impact test would cause less damage with a spherical impactor with a radious bigger than 0.98 cm.
Resumo:
Mealiness is a sensory attribute that cannot be defined by a single parameter but through a combination of variables (multidimensional structure). Previous studies propose the definition of mealiness as the lack of crispiness, of hardness and of juiciness. Current aims are focused on establishing non destructive tests for mealiness assessment. MultiSliceMultiEcho Magnetic resonance images (MRI, 64*64pixels) have been taken corresponding to a 3ms of Echo time. Small samples of Top Red apples stored 6 months at controlled atmosphere (expected to be non mealy) and 2°C (expected to be mealy) have been used for MRI imaging. Three out of four apples corresponding to the sample maintained at controlled atmosphere did not develop mealiness while three out of four fruits corresponding to the sample stored at 2°C became mealy after 6 month of storage. The minimum T2 values/image obtained for the mealy apples shows to be significantly lower when compared with non mealy apples pointing that a more dis-aggregated structure leads to a quicker loss of signal Also, there is a significant linear correlation (r=-0.76) between the number of pixels with a T2 value below 35ms within a fruit image and the deformation parameter registered during the Magness-Taylor firmness test. Finally, all the T2 images of the mealy apples show a regional variation of contrast which is not shown for non mealy apples. This variation of contrast is similar to the MRI images of water-cored apples indicating that in these cases there is a differential water movement that may precede the internal browning.
Resumo:
Results of previous studies conducted by different researchers have shown that impact techniques can be used to evaluate firmness (Delwiche et al., 1989; Delwiche et al.;1996; Jaren et al., 1992; Ruiz Altisent et al., 1996). To impact the fruit with a small spherical impactor of known mass and radius of curvature and measure the acceleration of the impactor is a technique described by Chen et al. (1985) and used by several researchers for sensing fruit firmness (Jaren et al., 1992; Correa et al.; 1992). The advantages of this method vs. a force sensor that measures the force as a function of time is that the measured impact-acceleration response is independent of the fruit mass and is less sensitive to the variation in the radius of curvature of the fruit (Chen et al., 1996). Ruiz Altisent et al. (1993) developed and used a 50 g impactor with a 19 mm diameter spherical tip, dropping from different height for fruits (apples, pears, avocados, melons, peaches ...). Another impact device for firmness sensing of fruits was developed by Chen and Ruiz Altisent (1996). They designed and fabricated an experimental low-mass impact sensor for high-speed sensing of fruit firmness. The impactor consisted of a semi-spherical impacting tip attached to the end (near the centre of percussion) of a pivoting arm. Impact is done by swinging the impactor to collide with the fruit. It has been implemented for on-line use. In both devices a small accelerometer is mounted behind the impacting tip. Lateral impactor and vertical impactor have been used in laboratory and the results from non-destructive impact tests have contributed to standardise methods to measure fruit firmness: Barreiro (1992) compared impact parameters and results of Magness-Taylor penetration tests for apples, pears, apricots [and peaches; Agulheiro (1994) studied the behaviour of the impact parameters during seven weeks of cold storage of two melon varieties; Ortiz (1998) used low energy impact and NIR procedures to segregate non crispy, non firm and soft peaches. Steinmetz (1996) compared various non-destructive firmness sensors, based on sound, impact and micro-deformation.
Resumo:
Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10–20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse = 0.76), 46% of measured canopy chlorophyll contents (rmse = 719 mg m−2) and 51% of measured canopy nitrogen contents (rmse = 2.7 g m−2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a "snap-shot" assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km−2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl.
Resumo:
A non destructive impact sensor to measure fruit firmness has been installed on the sizer chain of an experimental fruit packing line. The sensor measures the fruit firmness related to the acceleration-time curve supplied by an accelerometer attached to an impacting arm. The sensor works correctly at a speed of 5 to 7 fruits per second. Ratio A/t (maximum acceleration value divided by its corresponding time), mean, and maximum slopes of the curves supplied by the accelerometer, were well correlated with the firmness data obtained in laboratory with the load-unload test. The accelerometer signal allows the classification of the fruit in three levels of firmness, by means of a specific software.
Resumo:
The application of conservation treatments, such as consolidation and protection ones, has been demonstrated ineffective in many cases, and even harmful. Evaluation studies should be a mandatory task, ideally before and after the intervention, but both tasks are complex and unusual in the case of archaeological heritage. This study is mainly focused on analyzing changes in petrophysical properties of stone material from archaeological sites of Merida (Spain), evaluating, both on site and in laboratory, effects derived from different conservation treatments applied in past interventions, throughout the integration of different non-destructive techniques (NDT) and portable devices of analysis available at the Institute of Geosciences (CSIC,UCM). These techniques allow, not only assessment of effectiveness and alteration processes, but also monitoring durability of treatments, focused mainly on 1996 intervention in the case of Roman Theater, as well as different punctual interventions from the 90?s until date in the House of Mitreo. Studies carried out on archaeological sites of Merida permit us to compare outcomes and also check limitations in the use of those equipments. In this paper we discuss about the use of some techniques, their integration and limits, for the assessment of conservation treatments, showing some examples of Merida?s case study.
Resumo:
The applicability of a portable NIR spectrometer for estimating the °Brix content of grapes by non-destructive measurement has been analysed in field. The NIR spectrometer AOTF-NIR Luminar 5030, from Brimrose, was used. The spectrometer worked with a spectral range from 1100 to 2300 nm. A total of 600 samples of Cabernet Sauvignon grapes, belonging to two vintages, were measured in a non-destructive way. The specific objective of this research is to analyse the influence of the statistical treatment of the spectra information in the development of °Brix estimation models. Different data pretreatments have been tested before applying multivariate analysis techniques to generate estimation models. The calibration using PLS regression applied to spectra data pretreated with the MSC method (multiplicative scatter correction) has been the procedure with better results. Considering the models developed with data corresponding to the first campaign, errors near to 1.35 °Brix for calibration (SEC = 1.36) and, about 1.50 °Brix for validation (SECV = 1.52) were obtained. The coefficients of determination were R2 = 0.78 for the calibration, and R2 = 0.77 for the validation. In addition, the great variability in the data of the °Brix content for the tested plots was analysed. The variation of °Brix on the plots was up to 4 °Brix, for all varieties. This deviation was always superior to the calculated errors in the generated models. Therefore, the generated models can be considered to be valid for its application in field. Models were validated with data corresponding to the second campaign. In this sense, the validation results were worse than those obtained in the first campaign. It is possible to conclude in the need to realize an adjustment of the spectrometer for each season, and to develop specific predictive models for every vineyard.
Resumo:
Las técnicas de speckle tienen un gran interés científico e ingenieril, ya que son métodos de ejecución rápida y no destructiva, con base en el análisis de las fluctuaciones de intensidad de la radiación producida cuando la luz coherente de un haz láser es esparcida por un material dado. En este caso se produce un patrón aleatorio de interferencia y difracción donde la suma de las componentes desfasadas dará lugar a máximos y mínimos de intensidad en distintos puntos del espacio. Éste, pese a tratarse de un ruido nocivo en multitud de áreas tales como la transmisión de señales o la holografía, tiene importantes propiedades físicas que lo caracterizan y lo hacen útil como medio para analizar sistemas reales de muy diversa índole. En el presente estudio, se ha llevado a cabo un análisis polarimétrico de la radiación aleatoria esparcida por una serie de muestras metálicas y dieléctricas con el objetivo de establecer una base comparativa que nos permita poder distinguir unas de otras. Para este fin se han comparado los parámetros de polarización de Stokes, el grado de polarización de la luz, las distribuciones de intensidad y el tamaño medio del speckle registrado en los distintos patrones de intensidad. Además, se analizará la dependencia de la rugosidad en el grado de polarización de la luz para los distintos medios sometidos a estudio. Abstract Speckle techniques have a great scientific and engineering interest as they are methods of rapid and non-destructive execution, based on the analysis of the fluctuations of intensity of the radiation produced when coherent light of a laser beam is scattered by a material given. In this case, a random pattern of interference and diffraction occurs where the sum of phase shifted components will result in maximum or minimum of intensity at different points in space. This, despite being a harmful noise in many areas such as signal transmission or holography, has important physical properties that characterize it and make it useful as a means to analyze real systems of various kinds. In the present study, we have conducted a polarimetric analysis of the random radiation scattered by a series of metal and dielectric samples in order to establish a comparative basis to allow us to distinguish one from another. To this end we have compared, the stokes polarization parameters, the degree of polarization (DOP), the intensity distributions and the average size of the speckle registered in the different intensity patterns. Furthermore, dependence of roughness in the DOP of light for the different means under study will be analyzed.
Resumo:
La importancia de la Biomasa a nivel mundial, ha llevado a que más de 130 países celebren el protocolo de Kioto sobre el cambio climático dictaminando como objetivo la reducción de las emisiones de seis gases de efecto invernadero y tres gases industriales fluorados, así como la incorporación de la fijación del CO2 como un objetivo dentro de los criterios de gestión de bosques. Entre las metodologías no destructivas para estimación de biomasa, aquí desarrolladas se describen tres técnicas que varios autores han propuesto para calcular los valores de biomasa y carbono, tal como el uso de ecuaciones alométricas por medio de la medición de variables dasométricas como el DAP, la aplicación de la teoría de huecos (v.g. DHP, TRAC), y la obtención de biomasa mediante información radar. Las imágenes radar proporcionan una clara ventaja al poder ser adquiridas en cualquier momento del día e independientemente de las condiciones climatológicas. Se han adquirido dos imágenes de sensores diferentes, tal como ALOSPALSAR que trabaja en la banda L y RADARSAT-2 que trabaja en la banda C, se aplica la metodología descrita por Saatchi et al. (2007), desarrollando los algoritmos semiempíricos propuestos para la estimación de biomasa del fuste (Ws) y biomasa de la copa (Wc), obteniendo los coeficientes a partir de información adquirida en campo. ABSTRACT The importance of biomass worldwide has led to more than 130 countries to celebrate the Kyoto Protocol, aimed at reducing emissions of six greenhouse gases and three fluorinated industrial gases, and the incorporation of the fixation of CO2 as an objective within forest management criteria. Among the non-destructive methods for estimating biomass, three techniques were developed. These have been described by some authors, as the use of allometric equations by measuring forest variables such as the DAP, the application of the Gap Theory (e.g. DHP, TRAC), as well as deriving biomass by radar information. The radar images provide a clear advantage since they can be gathered at any time of the day regardless of the weather conditions. For this purpose, two radar products have acquired from different sensors, such as ALOSPALSAR operating on L frequency band and RADARSAT-2 operating on C frequency band. The methodology applied in this work is described in Saatchi et al. (2007), that develop semiempirical algorithms for estimating stem biomass (Ws) and crown biomass (Wc). The corresponding coefficients are determined by means of regression procedures using field information derived from allometric and radiation measurements.
Resumo:
The application of conservation treatments, such as consolidation and protection ones, has been demonstrated ineffective in many cases, and even harmful. Evaluation studies should be a mandatory task, ideally before and after the intervention, but both tasks are complex and unusual in the case of archaeological heritage. This study is mainly focused on analyzing changes in petrophysical properties of stone material from archaeological sites of Merida (Spain), evaluating, both on site and in laboratory, effects derived from different conservation treatments applied in past interventions, throughout the integration of different non-destructive techniques (NDT) and portable devices of analysis available at the Institute of Geosciences (CSIC,UCM). These techniques allow, not only assessment of effectiveness and alteration processes, but also monitoring durability of treatments, focused mainly on 1996 intervention in the case of Roman Theater, as well as different punctual interventions from the 90’s until date in the House of Mitreo. Studies carried out on archaeological sites of Merida permit us to compare outcomes and also check limitations in the use of those equipments. In this paper we discuss about the use of some techniques, their integration and limits, for the assessment of conservation treatments, showing some examples of Merida’s case study.
Resumo:
In the present paper, 1-year PM10 and PM 2.5 data from roadside and urban background monitoring stations in Athens (Greece), Madrid (Spain) and London (UK) are analysed in relation to other air pollutants (NO,NO2,NOx,CO,O3 and SO2)and several meteorological parameters (wind velocity, temperature, relative humidity, precipitation, solar radiation and atmospheric pressure), in order to investigate the sources and factors affecting particulate pollution in large European cities. Principal component and regression analyses are therefore used to quantify the contribution of both combustion and non-combustion sources to the PM10 and PM 2.5 levels observed. The analysis reveals that the EU legislated PM 10 and PM2.5 limit values are frequently breached, forming a potential public health hazard in the areas studied. The seasonal variability patterns of particulates varies among cities and sites, with Athens and Madrid presenting higher PM10 concentrations during the warm period and suggesting the larger relative contribution of secondary and natural particles during hot and dry days. It is estimated that the contribution of non-combustion sources varies substantially among cities, sites and seasons and ranges between 38-67% and 40-62% in London, 26-50% and 20-62% in Athens, and 31-58% and 33-68% in Madrid, for both PM10 and PM 2.5. Higher contributions from non-combustion sources are found at urban background sites in all three cities, whereas in the traffic sites the seasonal differences are smaller. In addition, the non-combustion fraction of both particle metrics is higher during the warm season at all sites. On the whole, the analysis provides evidence of the substantial impact of non-combustion sources on local air quality in all three cities. While vehicular exhaust emissions carry a large part of the risk posed on human health by particle exposure, it is most likely that mitigation measures designed for their reduction will have a major effect only at traffic sites and additional measures will be necessary for the control of background levels. However, efforts in mitigation strategies should always focus on optimal health effects.
Resumo:
Adjusting N fertilizer application to crop requirements is a key issue to improve fertilizer efficiency, reducing unnecessary input costs to farmers and N environmental impact. Among the multiple soil and crop tests developed, optical sensors that detect crop N nutritional status may have a large potential to adjust N fertilizer recommendation (Samborski et al. 2009). Optical readings are rapid to take and non-destructive, they can be efficiently processed and combined to obtain indexes or indicators of crop status. However, other physiological stress conditions may interfere with the readings and detection of the best crop nutritional status indicators is not always and easy task. Comparison of different equipments and technologies might help to identify strengths and weakness of the application of optical sensors for N fertilizer recommendation. The aim of this study was to evaluate the potential of various ground-level optical sensors and narrow-band indices obtained from airborne hyperspectral images as tools for maize N fertilizer recommendations. Specific objectives were i) to determine which indices could detect differences in maize plants treated with different N fertilizer rates, and ii) to evaluate its ability to identify N-responsive from non-responsive sites.
Resumo:
LHE (logarithmical hopping encoding) is a computationally efficient image compression algorithm that exploits the Weber–Fechner law to encode the error between colour component predictions and the actual value of such components. More concretely, for each pixel, luminance and chrominance predictions are calculated as a function of the surrounding pixels and then the error between the predictions and the actual values are logarithmically quantised. The main advantage of LHE is that although it is capable of achieving a low-bit rate encoding with high quality results in terms of peak signal-to-noise ratio (PSNR) and image quality metrics with full-reference (FSIM) and non-reference (blind/referenceless image spatial quality evaluator), its time complexity is O( n) and its memory complexity is O(1). Furthermore, an enhanced version of the algorithm is proposed, where the output codes provided by the logarithmical quantiser are used in a pre-processing stage to estimate the perceptual relevance of the image blocks. This allows the algorithm to downsample the blocks with low perceptual relevance, thus improving the compression rate. The performance of LHE is especially remarkable when the bit per pixel rate is low, showing much better quality, in terms of PSNR and FSIM, than JPEG and slightly lower quality than JPEG-2000 but being more computationally efficient.