957 resultados para Newton-Krylov
Resumo:
Cette thèse porte sur l’évaluation de la cohérence du réseau conceptuel démontré par des étudiants de niveau collégial inscrits en sciences de la nature. L’évaluation de cette cohérence s’est basée sur l’analyse des tableaux de Burt issus des réponses à des questionnaires à choix multiples, sur l’étude détaillée des indices de discrimination spécifique qui seront décrits plus en détail dans le corps de l’ouvrage et sur l’analyse de séquences vidéos d’étudiants effectuant une expérimentation en contexte réel. Au terme de ce projet, quatre grands axes de recherche ont été exploré. 1) Quelle est la cohérence conceptuelle démontrée en physique newtonienne ? 2) Est-ce que la maîtrise du calcul d’incertitude est corrélée au développement de la pensée logique ou à la maîtrise des mathématiques ? 3) Quelle est la cohérence conceptuelle démontrée dans la quantification de l’incertitude expérimentale ? 4) Quelles sont les procédures concrètement mise en place par des étudiants pour quantifier l’incertitude expérimentale dans un contexte de laboratoire semi-dirigé ? Les principales conclusions qui ressortent pour chacun des axes peuvent se formuler ainsi. 1) Les conceptions erronées les plus répandues ne sont pas solidement ancrées dans un réseau conceptuel rigide. Par exemple, un étudiant réussissant une question sur la troisième loi de Newton (sujet le moins bien réussi du Force Concept Inventory) montre une probabilité à peine supérieure de réussir une autre question sur ce même sujet que les autres participants. De nombreux couples de questions révèlent un indice de discrimination spécifique négatif indiquant une faible cohérence conceptuelle en prétest et une cohérence conceptuelle légèrement améliorée en post-test. 2) Si une petite proportion des étudiants ont montré des carences marquées pour les questions reliées au contrôle des variables et à celles traitant de la relation entre la forme graphique de données expérimentales et un modèle mathématique, la majorité des étudiants peuvent être considérés comme maîtrisant adéquatement ces deux sujets. Toutefois, presque tous les étudiants démontrent une absence de maîtrise des principes sous-jacent à la quantification de l’incertitude expérimentale et de la propagation des incertitudes (ci-après appelé métrologie). Aucune corrélation statistiquement significative n’a été observée entre ces trois domaines, laissant entendre qu’il s’agit d’habiletés cognitives largement indépendantes. Le tableau de Burt a pu mettre en lumière une plus grande cohérence conceptuelle entre les questions de contrôle des variables que n’aurait pu le laisser supposer la matrice des coefficients de corrélation de Pearson. En métrologie, des questions équivalentes n’ont pas fait ressortir une cohérence conceptuelle clairement démontrée. 3) L’analyse d’un questionnaire entièrement dédié à la métrologie laisse entrevoir des conceptions erronées issues des apprentissages effectués dans les cours antérieurs (obstacles didactiques), des conceptions erronées basées sur des modèles intuitifs et une absence de compréhension globale des concepts métrologiques bien que certains concepts paraissent en voie d’acquisition. 4) Lorsque les étudiants sont laissés à eux-mêmes, les mêmes difficultés identifiées par l’analyse du questionnaire du point 3) reviennent ce qui corrobore les résultats obtenus. Cependant, nous avons pu observer d’autres comportements reliés à la mesure en laboratoire qui n’auraient pas pu être évalués par le questionnaire à choix multiples. Des entretiens d’explicitations tenus immédiatement après chaque séance ont permis aux participants de détailler certains aspects de leur méthodologie métrologique, notamment, l’emploi de procédures de répétitions de mesures expérimentales, leurs stratégies pour quantifier l’incertitude et les raisons sous-tendant l’estimation numérique des incertitudes de lecture. L’emploi des algorithmes de propagation des incertitudes a été adéquat dans l’ensemble. De nombreuses conceptions erronées en métrologie semblent résister fortement à l’apprentissage. Notons, entre autres, l’assignation de la résolution d’un appareil de mesure à affichage numérique comme valeur de l’incertitude et l’absence de procédures d’empilement pour diminuer l’incertitude. La conception que la précision d’une valeur numérique ne peut être inférieure à la tolérance d’un appareil semble fermement ancrée.
Approximation de la distribution a posteriori d'un modèle Gamma-Poisson hiérarchique à effets mixtes
Resumo:
La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.
Resumo:
Objectifs: Observer l’évolution de la stomatite prothétique dans le temps quant à la fréquence et la sévérité ainsi que son association avec de potentiels facteurs de risque au cours d’un suivi longitudinal de 2 ans. Matériels et méthodes : Cent trente-cinq patients âgés complètement édentés et en bonne santé ont été sélectionnés pour participer à cette étude et ont été divisés de façon randomisée en deux groupes. Ils ont tous reçu une prothèse dentaire amovible totale conventionnelle au maxillaire supérieur. La moitié d’entre eux a reçu une prothèse totale mandibulaire implanto-portée retenue par deux attachements boule et l’autre moitié une prothèse conventionnelle. Ils ont été suivis sur une période de deux ans. Les données sociodémographiques, d’habitudes de vie, d’hygiène et de satisfaction des prothèses ont été amassées à l’aide de questionnaires. Les patients ont aussi subi un examen oral complet lors duquel une évaluation de la stomatite prothétique, basée sur la classification de Newton, a été effectuée ainsi qu’un prélèvement de la plaque prothétique. Les analyses microbiologiques pertinentes afin de détecter la présence de Candida ont ensuite été effectuées. Des tests Chi-carré de Pearson et McNemar ont été utilisés pour analyser la fréquence de la stomatite, son association avec de possibles facteurs de risque ainsi que son évolution dans le temps. Des rapports de cotes (odds ratio) et leurs intervalles de confiance (95%) ont été effectués afin de déterminer la force d’association entre les facteurs de risque et la stomatite prothétique. Résultats : La prévalence de la stomatite a augmenté entre la première (63,6%) et la deuxième année de suivi (88,7%) avec une incidence de 78,8%. Les patients souffrant d’une stomatite de type 2 ou 3 et qui brossent leur palais ont environ 6 fois plus de chance de voir la sévérité de leur stomatite diminuer [p = 0,04 OR 5,88 CI (1,1-32,2)]. Il n’y a pas d’association statistiquement significative entre la fréquence de la stomatite et les facteurs de risque investigués. La prévalence de la candidose est demeurée stable dans le temps (45,8% et 49,2% à la première et deuxième année de suivi respectivement, p > 0,05). Il n’y a pas d’association entre la présence d’une candidose orale, la stomatite prothétique et les facteurs de risque étudiés. Conclusion : Les résultats de cette étude suggèrent que la stomatite prothétique progresse dans le temps indépendamment de la présence d’une candidose. Le brossage du palais pourrait être une approche simple à conseiller aux patients souffrant d’une stomatite prothétique de type 2 ou 3.
Resumo:
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma.
Resumo:
L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions.
Resumo:
The current study is aimed at the development of a theoretical simulation tool based on Discrete Element Method (DEM) to 'interpret granular dynamics of solid bed in the cross section of the horizontal rotating cylinder at the microscopic level and subsequently apply this model to establish the transition behaviour, mixing and segregation.The simulation of the granular motion developed in this work is based on solving Newton's equation of motion for each particle in the granular bed subjected to the collisional forces, external forces and boundary forces. At every instant of time, the forces are tracked and the positions velocities and accelarations of each partcle is The software code for this simulation is written in VISUAL FORTRAN 90 After checking the validity of the code with special tests, it is used to investigate the transition behaviour of granular solids motion in the cross section of a rotating cylinder for various rotational speeds and fill fraction.This work is hence directed towards a theoretical investigation based on Discrete Element Method (DEM) of the motion of granular solids in the radial direction of the horizontal cylinder to elucidate the relationship between the operating parameters of the rotating cylinder geometry and physical properties ofthe granular solid.The operating parameters of the rotating cylinder include the various rotational velocities of the cylinder and volumetric fill. The physical properties of the granular solids include particle sizes, densities, stiffness coefficients, and coefficient of friction Further the work highlights the fundamental basis for the important phenomena of the system namely; (i) the different modes of solids motion observed in a transverse crosssection of the rotating cylinder for various rotational speeds, (ii) the radial mixing of the granular solid in terms of active layer depth (iii) rate coefficient of mixing as well as the transition behaviour in terms of the bed turnover time and rotational speed and (iv) the segregation mechanisms resulting from differences in the size and density of particles.The transition behaviour involving its six different modes of motion of the granular solid bed is quantified in terms of Froude number and the results obtained are validated with experimental and theoretical results reported in the literature The transition from slumping to rolling mode is quantified using the bed turnover time and a linear relationship is established between the bed turn over time and the inverse of the rotational speed of the cylinder as predicted by Davidson et al. [2000]. The effect of the rotational speed, fill fraction and coefficient of friction on the dynamic angle of repose are presented and discussed. The variation of active layer depth with respect to fill fraction and rotational speed have been investigated. The results obtained through simulation are compared with the experimental results reported by Van Puyvelde et. at. [2000] and Ding et at. [2002].The theoretical model has been further extended, to study the rmxmg and segregation in the transverse direction for different particle sizes and their size ratios. The effect of fill fraction and rotational speed on the transverse mixing behaviour is presented in the form of a mixing index and mixing kinetics curve. The segregation pattern obtained by the simulation of the granular solid bed with respect to the rotational speed of the cylinder is presented both in graphical and numerical forms. The segregation behaviour of the granular solid bed with respect to particle size, density and volume fraction of particle size has been investigated. Several important macro parameters characterising segregation such as mixing index, percolation index and segregation index have been derived from the simulation tool based on first principles developed in this work.
Resumo:
Es werde das lineare Regressionsmodell y = X b + e mit den ueblichen Bedingungen betrachtet. Weiter werde angenommen, dass der Parametervektor aus einem Ellipsoid stammt. Ein optimaler Schaetzer fuer den Parametervektor ist durch den Minimax-Schaetzer gegeben. Nach der entscheidungstheoretischen Formulierung des Minimax-Schaetzproblems werden mit dem Bayesschen Ansatz, Spektralen Methoden und der Darstellung von Hoffmann und Laeuter Wege zur Bestimmung des Minimax- Schaetzers dargestellt und in Beziehung gebracht. Eine Betrachtung von Modellen mit drei Einflussgroeßen und gemeinsamen Eigenvektor fuehrt zu einer Strukturierung des Problems nach der Vielfachheit des maximalen Eigenwerts. Die Bestimmung des Minimax-Schaetzers in einem noch nicht geloesten Fall kann auf die Bestimmung einer Nullstelle einer nichtlinearen reellwertigen Funktion gefuehrt werden. Es wird ein Beispiel gefunden, in dem die Nullstelle nicht durch Radikale angegeben werden kann. Durch das Intervallschachtelungs-Prinzip oder Newton-Verfahren ist die numerische Bestimmung der Nullstelle moeglich. Durch Entwicklung einer Fixpunktgleichung aus der Darstellung von Hoffmann und Laeuter war es in einer Simulation moeglich die angestrebten Loesungen zu finden.
Resumo:
In the present paper we concentrate on solving sequences of nonsymmetric linear systems with block structure arising from compressible flow problems. We attempt to improve the solution process by sharing part of the computational effort throughout the sequence. This is achieved by application of a cheap updating technique for preconditioners which we adapted in order to be used for our applications. Tested on three benchmark compressible flow problems, the strategy speeds up the entire computation with an acceleration being particularly pronounced in phases of instationary behavior.
Resumo:
In der Arbeit werden zunächst die wesentlichsten Fakten über Schiefpolynome wiederholt, der Fokus liegt dabei auf Shift- und q-Shift-Operatoren in Charakteristik Null. Alle für die Arithmetik mit diesen Objekten notwendigen Konzepte und Algorithmen finden sich im ersten Kapitel. Einige der zur Bestimmung von Lösungen notwendigen Daten können aus dem Newtonpolygon, einer den Operatoren zugeordneten geometrischen Figur, abgelesen werden. Die Herleitung dieser Zusammenhänge ist das Thema des zweiten Kapitels der Arbeit, wobei dies insbesondere im q-Shift-Fall in dieser Form neu ist. Das dritte Kapitel beschäftigt sich mit der Bestimmung polynomieller und rationaler Lösungen dieser Operatoren, dabei folgt es im Wesentlichen der Darstellung von Mark van Hoeij. Der für die Faktorisierung von (q-)Shift Operatoren interessanteste Fall sind die sogenannten (q-)hypergeometrischen Lösungen, die direkt zu Rechtsfaktoren erster Ordnung korrespondieren. Im vierten Kapitel wird der van Hoeij-Algorithmus vom Shift- auf den q-Shift-Fall übertragen. Außerdem wird eine deutliche Verbesserung des q-Petkovsek-Algorithmus mit Hilfe der Daten des Newtonpolygons hergeleitet. Das fünfte Kapitel widmet sich der Berechnung allgemeiner Faktoren, wozu zunächst der adjungierte Operator eingeführt wird, der die Berechnung von Linksfaktoren erlaubt. Dann wird ein Algorithmus zur Berechnung von Rechtsfaktoren beliebiger Ordnung dargestellt. Für die praktische Benutzung ist dies allerdings für höhere Ordnungen unpraktikabel. Bei fast allen vorgestellten Algorithmen tritt das Lösen linearer Gleichungssysteme über rationalen Funktionenkörpern als Zwischenschritt auf. Dies ist in den meisten Computeralgebrasystemen nicht befriedigend gelöst. Aus diesem Grund wird im letzten Kapitel ein auf Evaluation und Interpolation basierender Algorithmus zur Lösung dieses Problems vorgestellt, der in allen getesteten Systemen den Standard-Algorithmen deutlich überlegen ist. Alle Algorithmen der Arbeit sind in einem MuPAD-Package implementiert, das der Arbeit beiliegt und eine komfortable Handhabung der auftretenden Objekte erlaubt. Mit diesem Paket können in MuPAD nun viele Probleme gelöst werden, für die es vorher keine Funktionen gab.
Resumo:
In dieser Arbeit werden nichtüberlappende Gebietszerlegungsmethoden einerseits hinsichtlich der zu lösenden Problemklassen verallgemeinert und andererseits in bisher nicht untersuchten Kontexten betrachtet. Dabei stehen funktionalanalytische Untersuchungen zur Wohldefiniertheit, eindeutigen Lösbarkeit und Konvergenz im Vordergrund. Im ersten Teil werden lineare elliptische Dirichlet-Randwertprobleme behandelt, wobei neben Problemen mit dominantem Hauptteil auch solche mit singulärer Störung desselben, wie konvektions- oder reaktionsdominante Probleme zugelassen sind. Der zweite Teil befasst sich mit (gleichmäßig) monotonen koerziven quasilinearen elliptischen Dirichlet-Randwertproblemen. In beiden Fällen wird das Lipschitz-Gebiet in endlich viele Lipschitz-Teilgebiete zerlegt, wobei insbesondere Kreuzungspunkte und Teilgebiete ohne Außenrand zugelassen sind. Anschließend werden Transmissionsprobleme mit frei wählbaren $L^{\infty}$-Parameterfunktionen hergeleitet, wobei die Konormalenableitungen als Funktionale auf geeigneten Funktionenräumen über den Teilrändern ($H_{00}^{1/2}(\Gamma)$) interpretiert werden. Die iterative Lösung dieser Transmissionsprobleme mit einem Ansatz von Deng führt auf eine Substrukturierungsmethode mit Robin-artigen Transmissionsbedingungen, bei der eine Auswertung der Konormalenableitungen aufgrund einer geschickten Aufdatierung der Robin-Daten nicht notwendig ist (insbesondere ist die bekannte Robin-Robin-Methode von Lions als Spezialfall enthalten). Die Konvergenz bezüglich einer partitionierten $H^1$-Norm wird für beide Problemklassen gezeigt. Dabei werden keine über $H^1$ hinausgehende Regularitätsforderungen an die Lösungen gestellt und die Gebiete müssen keine zusätzlichen Glattheitsvoraussetzungen erfüllen. Im letzten Kapitel werden nichtmonotone koerzive quasilineare Probleme untersucht, wobei das Zugrunde liegende Gebiet nur in zwei Lipschitz-Teilgebiete zerlegt sein soll. Das zugehörige nichtlineare Transmissionsproblem wird durch Kirchhoff-Transformation in lineare Teilprobleme mit nichtlinearen Kopplungsbedingungen überführt. Ein optimierungsbasierter Lösungsansatz, welcher einen geeigneten Abstand der rücktransformierten Dirichlet-Daten der linearen Teilprobleme auf den Teilrändern minimiert, führt auf ein optimales Kontrollproblem. Die dabei entstehenden regularisierten freien Minimierungsprobleme werden mit Hilfe eines Gradientenverfahrens unter minimalen Glattheitsforderungen an die Nichtlinearitäten gelöst. Unter zusätzlichen Glattheitsvoraussetzungen an die Nichtlinearitäten und weiteren technischen Voraussetzungen an die Lösung des quasilinearen Ausgangsproblems, kann zudem die quadratische Konvergenz des Newton-Verfahrens gesichert werden.
Resumo:
Diese Arbeit beschäftigt sich mit der Frage, wie sich in einer Familie von abelschen t-Moduln die Teilfamilie der uniformisierbaren t-Moduln beschreiben lässt. Abelsche t-Moduln sind höherdimensionale Verallgemeinerungen von Drinfeld-Moduln über algebraischen Funktionenkörpern. Bekanntermaßen lassen sich Drinfeld-Moduln in allgemeiner Charakteristik durch analytische Tori parametrisieren. Diese Tatsache überträgt sich allerdings nur auf manche t-Moduln, die man als uniformisierbar bezeichnet. Die Situation hat eine gewisse Analogie zur Theorie von elliptischen Kurven, Tori und abelschen Varietäten über den komplexen Zahlen. Um zu entscheiden, ob ein t-Modul in diesem Sinne uniformisierbar ist, wendet man ein Kriterium von Anderson an, das die rigide analytische Trivialität der zugehörigen t-Motive zum Inhalt hat. Wir wenden dieses Kriterium auf eine Familie von zweidimensionalen t-Moduln vom Rang vier an, die von Koeffizienten a,b,c,d abhängen, und gelangen dabei zur äquivalenten Fragestellung nach der Konvergenz von gewissen rekursiv definierten Folgen. Das Konvergenzverhalten dieser Folgen lässt sich mit Hilfe von Newtonpolygonen gut untersuchen. Schließlich erhält man durch dieses Vorgehen einfach formulierte Bedingungen an die Koeffizienten a,b,c,d, die einerseits die Uniformisierbarkeit garantieren oder andererseits diese ausschließen.
Resumo:
Die Untersuchung des dynamischen aeroelastischen Stabilitätsverhaltens von Flugzeugen erfordert sehr komplexe Rechenmodelle, welche die wesentlichen elastomechanischen und instationären aerodynamischen Eigenschaften der Konstruktion wiedergeben sollen. Bei der Modellbildung müssen einerseits Vereinfachungen und Idealisierungen im Rahmen der Anwendung der Finite Elemente Methode und der aerodynamischen Theorie vorgenommen werden, deren Auswirkungen auf das Simulationsergebnis zu bewerten sind. Andererseits können die strukturdynamischen Kenngrößen durch den Standschwingungsversuch identifiziert werden, wobei die Ergebnisse Messungenauigkeiten enthalten. Für eine robuste Flatteruntersuchung müssen die identifizierten Unwägbarkeiten in allen Prozessschritten über die Festlegung von unteren und oberen Schranken konservativ ermittelt werden, um für alle Flugzustände eine ausreichende Flatterstabilität sicherzustellen. Zu diesem Zweck wird in der vorliegenden Arbeit ein Rechenverfahren entwickelt, welches die klassische Flatteranalyse mit den Methoden der Fuzzy- und Intervallarithmetik verbindet. Dabei werden die Flatterbewegungsgleichungen als parameterabhängiges nichtlineares Eigenwertproblem formuliert. Die Änderung der komplexen Eigenlösung infolge eines veränderlichen Einflussparameters wird mit der Methode der numerischen Fortsetzung ausgehend von der nominalen Startlösung verfolgt. Ein modifizierter Newton-Iterations-Algorithmus kommt zur Anwendung. Als Ergebnis liegen die berechneten aeroelastischen Dämpfungs- und Frequenzverläufe in Abhängigkeit von der Fluggeschwindigkeit mit Unschärfebändern vor.
Resumo:
Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.
Resumo:
We study the preconditioning of symmetric indefinite linear systems of equations that arise in interior point solution of linear optimization problems. The preconditioning method that we study exploits the block structure of the augmented matrix to design a similar block structure preconditioner to improve the spectral properties of the resulting preconditioned matrix so as to improve the convergence rate of the iterative solution of the system. We also propose a two-phase algorithm that takes advantage of the spectral properties of the transformed matrix to solve for the Newton directions in the interior-point method. Numerical experiments have been performed on some LP test problems in the NETLIB suite to demonstrate the potential of the preconditioning method discussed.