861 resultados para New cutting tool


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visualisation of program executions has been used in applications which include education and debugging. However, traditional visualisation techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding the behaviour of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this chapter we discuss techniques for visualising data evolution in CLP. We briefly review some previously proposed visualisation paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyse the behaviour and characteristics of an execution. In particular, we concentrate on the representation of the run-time values of the variables, and the constraints among them. Given our interest in visualising large executions, we also pay attention to abstraction techniques, i.e., techniques which are intended to help in reducing the complexity of the visual information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomedical ontologies are key elements for building up the Life Sciences Semantic Web. Reusing and building biomedical ontologies requires flexible and versatile tools to manipulate them efficiently, in particular for enriching their axiomatic content. The Ontology Pre Processor Language (OPPL) is an OWL-based language for automating the changes to be performed in an ontology. OPPL augments the ontologists’ toolbox by providing a more efficient, and less error-prone, mechanism for enriching a biomedical ontology than that obtained by a manual treatment. Results We present OPPL-Galaxy, a wrapper for using OPPL within Galaxy. The functionality delivered by OPPL (i.e. automated ontology manipulation) can be combined with the tools and workflows devised within the Galaxy framework, resulting in an enhancement of OPPL. Use cases are provided in order to demonstrate OPPL-Galaxy’s capability for enriching, modifying and querying biomedical ontologies. Conclusions Coupling OPPL-Galaxy with other bioinformatics tools of the Galaxy framework results in a system that is more than the sum of its parts. OPPL-Galaxy opens a new dimension of analyses and exploitation of biomedical ontologies, including automated reasoning, paving the way towards advanced biological data analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work indicates the importance of the Final Year Project (FYP) in the strengthening of competences of engineering students. The study also shows which personal competences of students are reinforced most during the FYP process,including the preparation, elaboration, presentation and defence stages. In order to gather information on this subject, a survey was conducted at two different Spanish technical universities—one public and one private—and a comparative analysis was performed of the questionnaires collected. The competence model considered is that used by the Accreditation Board for Engineering and Technology (ABET), since the official title of the public university has been accredited by this model. The results indicate which personal and professional competences of students are reinforced well by undertaking the FYP. Any significant differences in response by university are explained in the study. For validation purposes, the results were contrasted with the instructor’s perspective using the triangulation methodology. Finally, the conclusions drawn will permit the design of new study plans to cope more effectively with the challenges of the FYP in the new Bologna framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the classic oscillator design methods are reviewed, and their strengths and weaknesses are shown. Provisos for avoiding the misuse of classic methods are also proposed. If the required provisos are satisfied, the solutions provided by the classic methods (oscillator start-up linear approximation) will be correct. The provisos verification needs to use the NDF (Network Determinant Function). The use of the NDF or the most suitable RRT (Return Relation Transponse), which is directly related to the NDF, as a tool to analyze oscillators leads to a new oscillator design method. The RRT is the "true" loop-gain of oscillators. The use of the new method is demonstrated with examples. Finally, a comparison of NDF/RRT results with the HB (Harmonic Balance) simulation and practical implementation measurements prove the universal use of the new methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The educational platform Virtual Science Hub (ViSH) has been developed as part of the GLOBAL excursion European project. ViSH (http://vishub.org/) is a portal where teachers and scientist interact to create virtual excursions to science infrastructures. The main motivation behind the project was to connect teachers - and in consequence their students - to scientific institutions and their wide amount of infrastructures and resources they are working with. Thus the idea of a hub was born that would allow the two worlds of scientists and teachers to connect and to innovate science teaching. The core of the ViSH?s concept design is based on virtual excursions, which allow for a number of pedagogical models to be applied. According to our internal definition a virtual excursion is a tour through some digital context by teachers and pupils on a given topic that is attractive and has an educational purpose. Inquiry-based learning, project-based and problem-based learning are the most prominent approaches that a virtual excursion may serve. The domain specific resources and scientific infrastructures currently available on the ViSH are focusing on life sciences, nano-technology, biotechnology, grid and volunteer computing. The virtual excursion approach allows an easy combination of these resources into interdisciplinary teaching scenarios. In addition, social networking features support the users in collaborating and communicating in relation to these excursions and thus create a community of interest for innovative science teaching. The design and development phases were performed following a participatory design approach. An important aspect in this process was to create design partnerships amongst all actors involved, researchers, developers, infrastructure providers, teachers, social scientists, and pedagogical experts early in the project. A joint sense of ownership was created and important changes during the conceptual phase were implemented in the ViSH due to early user feedback. Technology-wise the ViSH is based on the latest web technologies in order to make it cross-platform compatible so that it works on several operative systems such as Windows, Mac or Linux and multi-device accessible, such as desktop, tablet and mobile devices. The platform has been developed in HTML5, the latest standard for web development, assuring that it can run on any modern browser. In addition to social networking features a core element on the ViSH is the virtual excursions editor. It is a web tool that allows teachers and scientists to create rich mash-ups of learning resources provided by the e-Infrastructures (i.e. remote laboratories and live webcams). These rich mash-ups can be presented in either slides or flashcards format. Taking advantage of the web architecture supported, additional powerful components have been integrated like a recommendation engine to provide personalized suggestions about educational content or interesting users and a videoconference tool to enhance real-time collaboration like MashMeTV (http://www.mashme.tv/).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fresh-cut or minimally processed fruit and vegetables have been physically modified from its original form (by peeling, trimming, washing and cutting) to obtain a 100% edible product that is subsequently packaged (usually under modified atmosphere packaging –MAP) and kept in refrigerated storage. In fresh-cut products, physiological activity and microbiological spoilage, determine their deterioration and shelf-life. The major preservation techniques applied to delay spoilage are chilling storage and MAP, combined with chemical treatments antimicrobial solutions antibrowning, acidulants, antioxidants, etc.). The industry looks for safer alternatives. Consequently, the sector is asking for innovative, fast, cheap and objective techniques to evaluate the overall quality and safety of fresh-cut products in order to obtain decision tools for implementing new packaging materials and procedures. In recent years, hyperspectral imaging technique has been regarded as a tool for analyses conducted for quality evaluation of food products in research, control and industries. The hyperspectral imaging system allows integrating spectroscopic and imaging techniques to enable direct identification of different components or quality characteristics and their spatial distribution in the tested sample. The objective of this work is to develop hyperspectral image processing methods for the supervision through plastic films of changes related to quality deterioration in packed readyto-use leafy vegetables during shelf life. The evolutions of ready-to-use spinach and watercress samples covered with three different common transparent plastic films were studied. Samples were stored at 4 ºC during the monitoring period (until 21 days). More than 60 hyperspectral images (from 400 to 1000 nm) per species were analyzed using ad hoc routines and commercial toolboxes of MatLab®. Besides common spectral treatments for removing additive and multiplicative effects, additional correction, previously to any other correction, was performed in the images of leaves in order to avoid the modification in their spectra due to the presence of the plastic transparent film. Findings from this study suggest that the developed images analysis system is able to deal with the effects caused in the images by the presence of plastic films in the supervision of shelf-life in leafy vegetables, in which different stages of quality has been identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetic Monte Carlo (KMC) is a widely used technique to simulate the evolution of radiation damage inside solids. Despite de fact that this technique was developed several decades ago, there is not an established and easy to access simulating tool for researchers interested in this field, unlike in the case of molecular dynamics or density functional theory calculations. In fact, scientists must develop their own tools or use unmaintained ones in order to perform these types of simulations. To fulfil this need, we have developed MMonCa, the Modular Monte Carlo simulator. MMonCa has been developed using professional C++ programming techniques and has been built on top of an interpreted language to allow having a powerful yet flexible, robust but customizable and easy to access modern simulator. Both non lattice and Lattice KMC modules have been developed. We will present in this conference, for the first time, the MMonCa simulator. Along with other (more detailed) contributions in this meeting, the versatility of MMonCa to study a number of problems in different materials (particularly, Fe and W) subject to a wide range of conditions will be shown. Regarding KMC simulations, we have studied neutron-generated cascade evolution in Fe (as a model material). Starting with a Frenkel pair distribution we have followed the defect evolution up to 450 K. Comparison with previous simulations and experiments shows excellent agreement. Furthermore, we have studied a more complex system (He-irradiated W:C) using a previous parametrization [1]. He-irradiation at 4 K followed by isochronal annealing steps up to 500 K has been simulated with MMonCa. The He energy was 400 eV or 3 keV. In the first case, no damage is associated to the He implantation, whereas in the second one, a significant Frenkel pair concentration (evolving into complex clusters) is associated to the He ions. We have been able to explain He desorption both in the absence and in the presence of Frenkel pairs and we have also applied MMonCa to high He doses and fluxes at elevated temperatures. He migration and trapping dominate the kinetics of He desorption. These processes will be discussed and compared to experimental results. [1] C.S. Becquart et al. J. Nucl. Mater. 403 (2010) 75

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces novel calibration processes applied to antenna arrays with new architectures and technologies designed to improve the performance of traditional earth stations for satellite communications due to the increasing requirement of data capacity during last decades. Besides, the Radiation Group from the Technical University of Madrid has been working on the development of new antenna arrays based on novel architecture and technologies along many projects as a solution for the ground segment in the early future. Nowadays, the calibration process is an interesting and cutting edge research field in a period of expansion with a lot of work to do for calibration in transmission and also for reception of these novel antennas under development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is now an emerging need for an efficient modeling strategy to develop a new generation of monitoring systems. One method of approaching the modeling of complex processes is to obtain a global model. It should be able to capture the basic or general behavior of the system, by means of a linear or quadratic regression, and then superimpose a local model on it that can capture the localized nonlinearities of the system. In this paper, a novel method based on a hybrid incremental modeling approach is designed and applied for tool wear detection in turning processes. It involves a two-step iterative process that combines a global model with a local model to take advantage of their underlying, complementary capacities. Thus, the first step constructs a global model using a least squares regression. A local model using the fuzzy k-nearest-neighbors smoothing algorithm is obtained in the second step. A comparative study then demonstrates that the hybrid incremental model provides better error-based performance indices for detecting tool wear than a transductive neurofuzzy model and an inductive neurofuzzy model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser processing has been the tool of choice last years to develop improved concepts in contact formation for high efficiency crystalline silicon (c-Si) solar cells. New concepts based on standard laser fired contacts (LFC) or advanced laser doping (LD) techniques are optimal solutions for both the front and back contacts of a number of structures with growing interest in the c-Si PV industry. Nowadays, substantial efforts are underway to optimize these processes in order to be applied industrially in high efficiency concepts. However a critical issue in these devices is that, most of them, demand a very low thermal input during the fabrication sequence and a minimal damage of the structure during the laser irradiation process. Keeping these two objectives in mind, in this work we discuss the possibility of using laser-based processes to contact the rear side of silicon heterojunction (SHJ) solar cells in an approach fully compatible with the low temperature processing associated to these devices. First we discuss the possibility of using standard LFC techniques in the fabrication of SHJ cells on p-type substrates, studying in detail the effect of the laser wavelength on the contact quality. Secondly, we present an alternative strategy bearing in mind that a real challenge in the rear contact formation is to reduce the damage induced by the laser irradiation. This new approach is based on local laser doping techniques previously developed by our groups, to contact the rear side of p-type c-Si solar cells by means of laser processing before rear metallization of dielectric stacks containing Al2O3. In this work we demonstrate the possibility of using this new approach in SHJ cells with a distinct advantage over other standard LFC techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 12 January 2010, an earthquake hit the city of Port-au-Prince, capital of Haiti. The earthquake reached a magnitude Mw 7.0 and the epicenter was located near the town of Léogâne, approximately 25 km west of the capital. The earthquake occurred in the boundary region separating the Caribbean plate and the North American plate. This plate boundary is dominated by left-lateral strike slip motion and compression, and accommodates about 20 mm/y slip, with the Caribbean plate moving eastward with respect to the North American plate (DeMets et al., 2000). Initially the location and focal mechanism of the earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillo-Plantain Garden fault system (EPGFZ), however Hayes et al., (2010) combined seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process involved slip on multiple faults. Besides, the authors showed that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the EPGFZ. In December 2010, a Spanish cooperation project financed by the Politechnical University of Madrid started with a clear objective: Evaluation of seismic hazard and risk in Haiti and its application to the seismic design, urban planning, emergency and resource management. One of the tasks of the project was devoted to vulnerability assessment of the current building stock and the estimation of seismic risk scenarios. The study was carried out by following the capacity spectrum method as implemented in the software SELENA (Molina et al., 2010). The method requires a detailed classification of the building stock in predominant building typologies (according to the materials in the structure and walls, number of stories and age of construction) and the use of the building (residential, commercial, etc.). Later, the knowledge of the soil characteristics of the city and the simulation of a scenario earthquake will provide the seismic risk scenarios (damaged buildings). The initial results of the study show that one of the highest sources of uncertainties comes from the difficulty of achieving a precise building typologies classification due to the craft construction without any regulations. Also it is observed that although the occurrence of big earthquakes usually helps to decrease the vulnerability of the cities due to the collapse of low quality buildings and the reconstruction of seismically designed buildings, in the case of Port-au-Prince the seismic risk in most of the districts remains high, showing very vulnerable areas. Therefore the local authorities have to drive their efforts towards the quality control of the new buildings, the reinforcement of the existing building stock, the establishment of seismic normatives and the development of emergency planning also through the education of the population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, the building sector alone accounts for 40% of the total energy consumption in the European Union (EU). In most EU member states, about 70–90% of the buildings were constructed at least 20 years ago. Due to this, these buildings have a worse energy efficiency behavior than the new ones that comply with current regulations. As a consequence, acting on the existing building stock is needed, developing special methods on assessment and advice in order to reduce the total energy consumption. This article addresses a procedure allowing the classification and characterization of existing buildings facades. It can help researchers to achieve in-depth knowledge of the facades construction and therefore knowing their thermal behavior. Once knowing that, the most appropriate upgrading strategies can be established with the purpose of reducing the energy demand. Furthermore, the classified facade typologies have been verified, complying with current and future Spanish regulations and according to the results obtained, a series of upgrading strategies based on the opaque part and those in the translucent part, have been proposed. As a conclusion, this procedure helps us to select the most appropriate improvement measures for each type of facade in order to comply with current and future Spanish regulations. This proposed method has been tested in a specific neighborhood of Madrid, in a selected period of time, between 1950 and 1980, but it could be applicable to any other city.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years new models for organizations working on poverty alleviation have emerged. One of them, the social enterprise, has attracted the attention of both academics and practitioners all over the world. Even if defined in different ways depending on the context, this model has an enormous potential to generate social benefits and to promote local agency and private initiative in poverty alleviation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An effective K-12 science education is essential to succeed in future phases of the curriculum and the e-Infrastructures for education provide new opportunities to enhance it. This paper presents ViSH Viewer, an innovative web tool to consume educational content which aims to facilitate e-Science infrastructures access through a next generation learning object called "Virtual Excursion". Virtual Excursions provide a new way to explore science in class by taking advantage of e-Infrastructure resources and their integration with other educational contents, resulting in the creation of a reusable, interoperable and granular learning object. In order to better understand how this tool can allow teachers and students a joyful exploration of e-Science, we also present three Virtual Excursion examples. Details about the design, development and the tool itself are explained in this paper as well as the concept, structure and metadata of the new learning object.