975 resultados para Music genre classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a report on what can be learnt from our world dataset about viewers of The Lord of the Rings who were aged under 16. In this report, I draw both on the world set, and on the UK subset, sometimes drawing comparisons between them. The reason for using both is that, obviously, the world set is so much larger (comprising 24,739 in toto, with 2475 under 16), but the UK set (comprising 3115 in toto, and 306 under 16s) allows us to explore both some of the specificities of responses here, the qualitative meaning of some responses (given we worked in 14 languages, many are inaccessible to us for analysis), and of course their relations to the quantitative patterns that emerge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time adaptive music is now well-established as a popular medium, largely through its use in video game soundtracks. Commercial packages, such as fmod, make freely available the underlying technical methods for use in educational contexts, making adaptive music technologies accessible to students. Writing adaptive music, however, presents a significant learning challenge, not least because it requires a different mode of thought, and tutor and learner may have few mutual points of connection in discovering and understanding the musical drivers, relationships and structures in these works. This article discusses the creation of ‘BitBox!’, a gestural music interface designed to deconstruct and explain the component elements of adaptive composition through interactive play. The interface was displayed at the Dare Protoplay games exposition in Dundee in August 2014. The initial proof-of- concept study proved successful, suggesting possible refinements in design and a broader range of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this paper we reviewed the fingerprint classification literature from two different perspectives: the feature extraction and the classifier learning. Aiming at answering the question of which among the reviewed methods would perform better in a real implementation we end up in a discussion which showed the difficulty in answering this question. No previous comparison exists in the literature and comparisons among papers are done with different experimental frameworks. Moreover, the difficulty in implementing published methods was stated due to the lack of details in their description, parameters and the fact that no source code is shared. For this reason, in this paper we will go through a deep experimental study following the proposed double perspective. In order to do so, we have carefully implemented some of the most relevant feature extraction methods according to the explanations found in the corresponding papers and we have tested their performance with different classifiers, including those specific proposals made by the authors. Our aim is to develop an objective experimental study in a common framework, which has not been done before and which can serve as a baseline for future works on the topic. This way, we will not only test their quality, but their reusability by other researchers and will be able to indicate which proposals could be considered for future developments. Furthermore, we will show that combining different feature extraction models in an ensemble can lead to a superior performance, significantly increasing the results obtained by individual models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The musicological tradition places Liszt’s Sonata in B minor within the sphere of compositions inspired by the Faustian myth. Its musical material, its structure and its narrative exhibit certain similarities to the ‘Faust’ Symphony. Yet there has appeared a diff erent and, one may say, a rival interpretation of Sonata in B minor. What is more, it is well-documented from both a musical and a historical point of view. It has been presented by Hungarian pianist and musicologist Tibor Szász. He proposes the thesis that the Sonata in B minor has been in fact inspired by Milton’s Paradise Lost, with its three protagonists: Adam, Satan and Christ. He fi nds their illustrations and even some key elements of the plot in the Sonata’s narrative. But yet Milton’s Paradise Lost and Goethe’s Faust are both stories of the Fall and Salvation, of the cosmic struggle between good and evil. The triads of their protagonists – Adam and Eve, Satan, and Christ; Faust, Mephisto and Gretchen – are homological. Thus both interpretations of the Sonata, the Goethean and the Miltonian, or, in other words, the Faustian and the Luciferian, are parallel and complementary rather than rival. It is also highly probable that both have had their impact on the genesis of the Sonata in B minor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract unavailable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project investigates how religious music, invested with symbolic and cultural meaning, provided African Americans in border city churches with a way to negotiate conflict, assert individual values, and establish a collective identity in the post- emancipation era. In order to focus on the encounter between former slaves and free Blacks, the dissertation examines black churches that received large numbers of southern migrants during and after the Civil War. Primarily a work of history, the study also employs insights and conceptual frameworks from other disciplines including anthropology and ritual studies, African American studies, aesthetic theory, and musicology. It is a work of historical reconstruction in the tradition of scholarship that some have called "lived religion." Chapter 1 introduces the dissertation topic and explains how it contributes to scholarship. Chapter 2 examines social and religious conditions African Americans faced in Baltimore, MD, Philadelphia, PA, and Washington, DC to show why the Black Church played a key role in African Americans' adjustment to post-emancipation life. Chapter 3 compares religious slave music and free black church music to identify differences and continuities between them, as well as their functions in religious settings. Chapters 4, 5, and 6 present case studies on Bethel African Methodist Episcopal Church (Baltimore), Zoar Methodist Episcopal Church (Philadelphia), and St. Luke’s Protestant Episcopal Church (Washington, DC), respectively. Informed by fresh archival materials, the dissertation shows how each congregation used its musical life to uphold values like education and community, to come to terms with a shared experience, and to confront or avert authority when cultural priorities were threatened. By arguing over musical choices or performance practices, or agreeing on mutually appealing musical forms like the gospel songs of the Sunday school movement, African Americans forged lively faith communities and distinctive cultures in otherwise adverse environments. The study concludes that religious music was a crucial form of African American discourse and expression in the post-emancipation era. In the Black Church, it nurtured an atmosphere of exchange, gave structure and voice to conflict, helped create a public sphere, and upheld the values of black people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well documented that the presence of even a few air bubbles in water can signifi- cantly alter the propagation and scattering of sound. Air bubbles are both naturally and artificially generated in all marine environments, especially near the sea surface. The abil- ity to measure the acoustic propagation parameters of bubbly liquids in situ has long been a goal of the underwater acoustics community. One promising solution is a submersible, thick-walled, liquid-filled impedance tube. Recent water-filled impedance tube work was successful at characterizing low void fraction bubbly liquids in the laboratory [1]. This work details the modifications made to the existing impedance tube design to allow for submersed deployment in a controlled environment, such as a large tank or a test pond. As well as being submersible, the useable frequency range of the device is increased from 5 - 9 kHz to 1 - 16 kHz and it does not require any form of calibration. The opening of the new impedance tube is fitted with a large stainless steel flange to better define the boundary condition on the plane of the tube opening. The new device was validated against the classic theoretical result for the complex reflection coefficient of a tube opening fitted with an infinite flange. The complex reflection coefficient was then measured with a bubbly liquid (order 250 micron radius and 0.1 - 0.5 % void fraction) outside the tube opening. Results from the bubbly liquid experiments were inconsistent with flanged tube theory using current bubbly liquid models. The results were more closely matched to unflanged tube theory, suggesting that the high attenuation and phase speeds in the bubbly liquid made the tube opening appear as if it were radiating into free space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BoostMap is a recently proposed method for efficient approximate nearest neighbor retrieval in arbitrary non-Euclidean spaces with computationally expensive and possibly non-metric distance measures. Database and query objects are embedded into a Euclidean space, in which similarities can be rapidly measured using a weighted Manhattan distance. The key idea is formulating embedding construction as a machine learning task, where AdaBoost is used to combine simple, 1D embeddings into a multidimensional embedding that preserves a large amount of the proximity structure of the original space. This paper demonstrates that, using the machine learning formulation of BoostMap, we can optimize embeddings for indexing and classification, in ways that are not possible with existing alternatives for constructive embeddings, and without additional costs in retrieval time. First, we show how to construct embeddings that are query-sensitive, in the sense that they yield a different distance measure for different queries, so as to improve nearest neighbor retrieval accuracy for each query. Second, we show how to optimize embeddings for nearest neighbor classification tasks, by tuning them to approximate a parameter space distance measure, instead of the original feature-based distance measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An appearance-based framework for 3D hand shape classification and simultaneous camera viewpoint estimation is presented. Given an input image of a segmented hand, the most similar matches from a large database of synthetic hand images are retrieved. The ground truth labels of those matches, containing hand shape and camera viewpoint information, are returned by the system as estimates for the input image. Database retrieval is done hierarchically, by first quickly rejecting the vast majority of all database views, and then ranking the remaining candidates in order of similarity to the input. Four different similarity measures are employed, based on edge location, edge orientation, finger location and geometric moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearest neighbor classification using shape context can yield highly accurate results in a number of recognition problems. Unfortunately, the approach can be too slow for practical applications, and thus approximation strategies are needed to make shape context practical. This paper proposes a method for efficient and accurate nearest neighbor classification in non-Euclidean spaces, such as the space induced by the shape context measure. First, a method is introduced for constructing a Euclidean embedding that is optimized for nearest neighbor classification accuracy. Using that embedding, multiple approximations of the underlying non-Euclidean similarity measure are obtained, at different levels of accuracy and efficiency. The approximations are automatically combined to form a cascade classifier, which applies the slower approximations only to the hardest cases. Unlike typical cascade-of-classifiers approaches, that are applied to binary classification problems, our method constructs a cascade for a multiclass problem. Experiments with a standard shape data set indicate that a two-to-three order of magnitude speed up is gained over the standard shape context classifier, with minimal losses in classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearest neighbor retrieval is the task of identifying, given a database of objects and a query object, the objects in the database that are the most similar to the query. Retrieving nearest neighbors is a necessary component of many practical applications, in fields as diverse as computer vision, pattern recognition, multimedia databases, bioinformatics, and computer networks. At the same time, finding nearest neighbors accurately and efficiently can be challenging, especially when the database contains a large number of objects, and when the underlying distance measure is computationally expensive. This thesis proposes new methods for improving the efficiency and accuracy of nearest neighbor retrieval and classification in spaces with computationally expensive distance measures. The proposed methods are domain-independent, and can be applied in arbitrary spaces, including non-Euclidean and non-metric spaces. In this thesis particular emphasis is given to computer vision applications related to object and shape recognition, where expensive non-Euclidean distance measures are often needed to achieve high accuracy. The first contribution of this thesis is the BoostMap algorithm for embedding arbitrary spaces into a vector space with a computationally efficient distance measure. Using this approach, an approximate set of nearest neighbors can be retrieved efficiently - often orders of magnitude faster than retrieval using the exact distance measure in the original space. The BoostMap algorithm has two key distinguishing features with respect to existing embedding methods. First, embedding construction explicitly maximizes the amount of nearest neighbor information preserved by the embedding. Second, embedding construction is treated as a machine learning problem, in contrast to existing methods that are based on geometric considerations. The second contribution is a method for constructing query-sensitive distance measures for the purposes of nearest neighbor retrieval and classification. In high-dimensional spaces, query-sensitive distance measures allow for automatic selection of the dimensions that are the most informative for each specific query object. It is shown theoretically and experimentally that query-sensitivity increases the modeling power of embeddings, allowing embeddings to capture a larger amount of the nearest neighbor structure of the original space. The third contribution is a method for speeding up nearest neighbor classification by combining multiple embedding-based nearest neighbor classifiers in a cascade. In a cascade, computationally efficient classifiers are used to quickly classify easy cases, and classifiers that are more computationally expensive and also more accurate are only applied to objects that are harder to classify. An interesting property of the proposed cascade method is that, under certain conditions, classification time actually decreases as the size of the database increases, a behavior that is in stark contrast to the behavior of typical nearest neighbor classification systems. The proposed methods are evaluated experimentally in several different applications: hand shape recognition, off-line character recognition, online character recognition, and efficient retrieval of time series. In all datasets, the proposed methods lead to significant improvements in accuracy and efficiency compared to existing state-of-the-art methods. In some datasets, the general-purpose methods introduced in this thesis even outperform domain-specific methods that have been custom-designed for such datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016); National Science Foundation (SBE-035437, DEG-0221680); Office of Naval Research (N00014-01-1-0624)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do humans rapidly recognize a scene? How can neural models capture this biological competence to achieve state-of-the-art scene classification? The ARTSCENE neural system classifies natural scene photographs by using multiple spatial scales to efficiently accumulate evidence for gist and texture. ARTSCENE embodies a coarse-to-fine Texture Size Ranking Principle whereby spatial attention processes multiple scales of scenic information, ranging from global gist to local properties of textures. The model can incrementally learn and predict scene identity by gist information alone and can improve performance through selective attention to scenic textures of progressively smaller size. ARTSCENE discriminates 4 landscape scene categories (coast, forest, mountain and countryside) with up to 91.58% correct on a test set, outperforms alternative models in the literature which use biologically implausible computations, and outperforms component systems that use either gist or texture information alone. Model simulations also show that adjacent textures form higher-order features that are also informative for scene recognition.