891 resultados para Multicommodity capacitated network design problem
Resumo:
In this paper a nonlinear control has been designed using the dynamic inversion approach for automatic landing of unmanned aerial vehicles (UAVs), along with associated path planning. This is a difficult problem because of light weight of UAVs and strong coupling between longitudinal and lateral modes. The landing maneuver of the UAV is divided into approach, glideslope and flare. In the approach UAV aligns with the centerline of the runway by heading angle correction. In glideslope and flare the UAV follows straight line and exponential curves respectively in the pitch plane with no lateral deviations. The glideslope and flare path are scheduled as a function of approach distance from runway. The trajectory parameters are calculated such that the sink rate at touchdown remains within specified bounds. It is also ensured that the transition from the glideslope to flare path is smooth by ensuring C-1 continuity at the transition. In the outer loop, the roll rate command is generated by assuring a coordinated turn in the alignment segment and by assuring zero bank angle in the glideslope and flare segments. The pitch rate command is generated from the error in altitude to control the deviations from the landing trajectory. The yaw rate command is generated from the required heading correction. In the inner loop, the aileron, elevator and rudder deflections are computed together to track the required body rate commands. Moreover, it is also ensured that the forward velocity of the UAV at the touch down remains close to a desired value by manipulating the thrust of the vehicle. A nonlinear six-DOF model, which has been developed from extensive wind-tunnel testing, is used both for control design as well as to validate it.
Resumo:
The problem of optimum design of a Lanchester damper for minimum force transmission from a viscously damped single degree of freedom system subjected to harmonic excitation is investigated. Explicit expressions are developed for determining the optimum absorber parameters. It is shown that for the particular case of the undamped single degree of freedom system the results reduce to the classical ones obtained by using the concept of a fixed point on the transmissibility curves.
Resumo:
An optimal pitch steering programme of a solid-fuel satellite launch vehicle to maximize either (1) the injection velocity at a given altitude, or (2) the size of circular orbit, for a given payload is presented. The two-dimensional model includes the rotation of atmosphere with the Earth, the vehicle's lift and drag, variation of thrust with time and altitude, inverse-square gravitational field, and the specified initial vertical take-off. The inequality constraints on the aerodynamic load, control force, and turning rates are also imposed. Using the properties of the central force motion the terminal constraint conditions at coast apogee are transferred to the penultimate stage burnout. Such a transformation converts a time-free problem into a time-fixed one, reduces the number of terminal constraints, improves accuracy, besides demanding less computer memory and time. The adjoint equations are developed in a compact matrix form. The problem is solved on an IBM 360/44 computer using a steepest ascent algorithm. An illustrative analysis of a typical launch vehicle establishes the speed of convergence, and accuracy and applicability of the algorithm.
Resumo:
Amateurs are found in arts, sports, or entertainment, where they are linked with professional counterparts and inspired by celebrities. Despite the growing number of CSCW studies in amateur and professional domains, little is known about how technologies facilitate collaboration between these groups. Drawing from a 1.5-year field study in the domain of bodybuilding, this paper describes the collaboration between and within amateurs, professionals, and celebrities on social network sites. Social network sites help individuals to improve their performance in competitions, extend their support network, and gain recognition for their achievements. The findings show that amateurs benefit the most from online collaboration, whereas collaboration shifts from social network sites to offline settings as individuals develop further in their professional careers. This shift from online to offline settings constitutes a novel finding, which extends previous work on social network sites that has looked at groups of amateurs and professionals in isolation. As a contribution to practice, we highlight design factors that address this shift to offline settings and foster collaboration between and within groups.
Resumo:
Rapid growth in the global population requires expansion of building stock, which in turn calls for increased energy demand. This demand varies in time and also between different buildings, yet, conventional methods are only able to provide mean energy levels per zone and are unable to capture this inhomogeneity, which is important to conserve energy. An additional challenge is that some of the attempts to conserve energy, through for example lowering of ventilation rates, have been shown to exacerbate another problem, which is unacceptable indoor air quality (IAQ). The rise of sensing technology over the past decade has shown potential to address both these issues simultaneously by providing high–resolution tempo–spatial data to systematically analyse the energy demand and its consumption as well as the impacts of measures taken to control energy consumption on IAQ. However, challenges remain in the development of affordable services for data analysis, deployment of large–scale real–time sensing network and responding through Building Energy Management Systems. This article presents the fundamental drivers behind the rise of sensing technology for the management of energy and IAQ in urban built environments, highlights major challenges for their large–scale deployment and identifies the research gaps that should be closed by future investigations.
Resumo:
- Background Teamwork sits comfortably within the vocabularies of most physical education teachers. It is used to both describe and prescribe student behaviour in a variety of physical and sport-related activities. Yet while supporters of sport and PE have readily employed the term, remarkably few pedagogues have taken the time to consider what teamwork refers to, let alone what it means to teach it. - Focus of study In this paper, we examine practitioners' constructions of teamwork. - Participants and setting Data were generated with seven physical education teachers (four male and three female) at a state-funded secondary school near Brisbane, Australia. The teachers ranged in experience from three months to more than 30 years. - Research design The investigation was a case study of one physical education department at a secondary school. - Data collection Three interviews were conducted with each of the teachers. The first was biographical in nature and covered themes such as education and sporting experiences. During the second interviews, teachers produced examples and statements on the topic of teamwork as it occurs within their lessons. The material from the second set of interviews was explored in the final set where the teachers were invited to elaborate on and explain comments from their previous interviews. - Analysis Data were considered from a discursive-constructionist perspective and attention was given to linguistic and grammatical features of the teachers' commentary as well as the cultural relevance of the utterances. The notion of ‘interpretive repertoires’ – essentially cultural explanations bounded by particular socio-linguistic features – provided the central unit of analysis. - Findings The teachers in the project made use of an array of discursive resources to make sense of teamwork. These constructions often bore little resemblance to one another or to existing theories of teamwork. In some cases, the teachers offered vague descriptions or drew on alternative concepts to make sense of teamwork. - Conclusions Without a certain level of agreement in their everyday usage, teachers' constructions of teamwork fail to be convincing or useful. We maintain that a more substantive conceptualisation of teamwork is needed in the field of sport pedagogy and offer suggestions on how this might be accomplished.
Resumo:
This article addresses the problem of how to select the optimal combination of sensors and how to determine their optimal placement in a surveillance region in order to meet the given performance requirements at a minimal cost for a multimedia surveillance system. We propose to solve this problem by obtaining a performance vector, with its elements representing the performances of subtasks, for a given input combination of sensors and their placement. Then we show that the optimal sensor selection problem can be converted into the form of Integer Linear Programming problem (ILP) by using a linear model for computing the optimal performance vector corresponding to a sensor combination. Optimal performance vector corresponding to a sensor combination refers to the performance vector corresponding to the optimal placement of a sensor combination. To demonstrate the utility of our technique, we design and build a surveillance system consisting of PTZ (Pan-Tilt-Zoom) cameras and active motion sensors for capturing faces. Finally, we show experimentally that optimal placement of sensors based on the design maximizes the system performance.
Resumo:
One of the critical issues in large scale commercial exploitation of MEMS technology is its system integration. In MEMS, a system design approach requires integration of varied and disparate subsystems with one of a kind interface. The physical scales as well as the magnitude of signals of various subsystems vary widely. Known and proven integration techniques often lead to considerable loss in advantages the tiny MEMS sensors have to offer. Therefore, it becomes imperative to think of the entire system at the outset, at least in terms of the concept design. Such design entails various aspects of the system ranging from selection of material, transduction mechanism, structural configuration, interface electronics, and packaging. One way of handling this problem is the system-in-package approach that uses optimized technology for each function using the concurrent hybrid engineering approach. The main strength of this design approach is the fast time to prototype development. In the present work, we pursue this approach for a MEMS load cell to complete the process of system integration for high capacity load sensing. The system includes; a micromachined sensing gauge, interface electronics and a packaging module representing a system-in-package ready for end characterization. The various subsystems are presented in a modular stacked form using hybrid technologies. The micromachined sensing subsystem works on principles of piezo-resistive sensing and is fabricated using CMOS compatible processes. The structural configuration of the sensing layer is designed to reduce the offset, temperature drift, and residual stress effects of the piezo-resistive sensor. ANSYS simulations are carried out to study the effect of substrate coupling on sensor structure and its sensitivity. The load cell system has built-in electronics for signal conditioning, processing, and communication, taking into consideration the issues associated with resolution of minimum detectable signal. The packaged system represents a compact and low cost solution for high capacity load sensing in the category of compressive type load sensor.
Resumo:
Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent d evelopments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.
Resumo:
We study a scheduling problem in a wireless network where vehicles are used as store-and-forward relays, a situation that might arise, for example, in practical rural communication networks. A fixed source node wants to transfer a file to a fixed destination node, located beyond its communication range. In the absence of any infrastructure connecting the two nodes, we consider the possibility of communication using vehicles passing by. Vehicles arrive at the source node at renewal instants and are known to travel towards the destination node with average speed v sampled from a given probability distribution. Th source node communicates data packets (or fragments) of the file to the destination node using these vehicles as relays. We assume that the vehicles communicate with the source node and the destination node only, and hence, every packet communication involves two hops. In this setup, we study the source node's sequential decision problem of transferring packets of the file to vehicles as they pass by, with the objective of minimizing delay in the network. We study both the finite file size case and the infinite file size case. In the finite file size case, we aim to minimize the expected file transfer delay, i.e. expected value of the maximum of the packet sojourn times. In the infinite file size case, we study the average packet delay minimization problem as well as the optimal tradeoff achievable between the average queueing delay at the source node buffer and the average transit delay in the relay vehicle.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.
Resumo:
In this paper we have proposed and implemented a joint Medium Access Control (MAC) -cum- Routing scheme for environment data gathering sensor networks. The design principle uses node 'battery lifetime' maximization to be traded against a network that is capable of tolerating: A known percentage of combined packet losses due to packet collisions, network synchronization mismatch and channel impairments Significant end-to-end delay of an order of few seconds We have achieved this with a loosely synchronized network of sensor nodes that implement Slotted-Aloha MAC state machine together with route information. The scheme has given encouraging results in terms of energy savings compared to other popular implementations. The overall packet loss is about 12%. The battery life time increase compared to B-MAC varies from a minimum of 30% to about 90% depending on the duty cycle.
Resumo:
Previous studies have shown that buffering packets in DRAM is a performance bottleneck. In order to understand the impediments in accessing the DRAM, we developed a detailed Petri net model of IP forwarding application on IXP2400 that models the different levels of the memory hierarchy. The cell based interface used to receive and transmit packets in a network processor leads to some small size DRAM accesses. Such narrow accesses to the DRAM expose the bank access latency, reducing the bandwidth that can be realized. With real traces up to 30% of the accesses are smaller than the cell size, resulting in 7.7% reduction in DRAM bandwidth. To overcome this problem, we propose buffering these small chunks of data in the on chip scratchpad memory. This scheme also exploits greater degree of parallelism between different levels of the memory hierarchy. Using real traces from the internet, we show that the transmit rate can be improved by an average of 21% over the base scheme without the use of additional hardware. Further, the impact of different traffic patterns on the network processor resources is studied. Under real traffic conditions, we show that the data bus which connects the off-chip packet buffer to the micro-engines, is the obstacle in achieving higher throughput.
Resumo:
Bluetooth is an emerging standard in short range, low cost and low power wireless networks. MAC is a generic polling based protocol, where a central Bluetooth unit (master) determines channel access to all other nodes (slaves) in the network (piconet). An important problem in Bluetooth is the design of efficient scheduling protocols. This paper proposes a polling policy that aims to achieve increased system throughput and reduced packet delays while providing reasonably good fairness among all traffic flows in a Bluetooth Piconet. We present an extensive set of simulation results and performance comparisons with two important existing algorithms. Our results indicate that our proposed scheduling algorithm outperforms the Round Robin scheduling algorithm by more than 40% in all cases tried. Our study also confirms that our proposed policy achieves higher throughput and lower packet delays with reasonable fairness among all the connections.
Resumo:
We consider a single-hop data-gathering sensor network, consisting of a set of sensor nodes that transmit data periodically to a base-station. We are interested in maximizing the lifetime of this network. With our definition of network lifetime and the assumption that the radio transmission energy consumption forms the most significant portion of the total energy consumption at a sensor node, we attempt to enhance the network lifetime by reducing the transmission energy budget of sensor nodes by exploiting three system-level opportunities. We pose the problem of maximizing lifetime as a max-min optimization problem subject to the constraint of successful data collection and limited energy supply at each node. This turns out to be an extremely difficult optimization to solve. To reduce the complexity of this problem, we allow the sensor nodes and the base-station to interactively communicate with each other and employ instantaneous decoding at the base-station. The chief contribution of the paper is to show that the computational complexity of our problem is determined by the complex interplay of various system-level opportunities and challenges.