876 resultados para Multi-phase corrosion
Resumo:
In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.
Resumo:
Lamellar pathology in experimentally-induced equine laminitis associated with euglycaemic hyperinsulinaemia is substantial by the acute, clinical phase (∼48 h post-induction). However, lamellar pathology of the developmental, pre-clinical phase requires evaluation. The aim of this study was to analyse lamellar lesions both qualitatively and quantitatively, 6, 12 and 24 h after the commencement of hyperinsulinaemia. Histological and histomorphometrical analyses of lamellar pathology at each time-point included assessment of lamellar length and width, epidermal cell proliferation and death, basement membrane (BM) pathology and leucocyte infiltration. Archived lamellar tissue from control horses and those with acute, insulin-induced laminitis (48 h) was also assessed for cellular proliferative activity by counting the number of cells showing positive nuclear immuno labelling for TPX2. Decreased secondary epidermal lamellar (SEL) width and increased histomorphological evidence of SEL epidermal basal (and supra-basal) cell death occurred early in disease progression (6 h). Increased cellular proliferation in SELs, infiltration of the dermis with small numbers of leucocytes and BM damage occurred later (24 and 48 h). Some lesions, such as narrowing of the SELs, were progressive over this time period (6–48 h). Cellular pathology preceded leucocyte infiltration and BM pathology, indicating that the latter changes may be secondary or downstream events in hyperinsulinaemic laminitis.
Resumo:
Traffic congestion has a significant impact on the economy and environment. Encouraging the use of multimodal transport (public transport, bicycle, park’n’ride, etc.) has been identified by traffic operators as a good strategy to tackle congestion issues and its detrimental environmental impacts. A multi-modal and multi-objective trip planner provides users with various multi-modal options optimised on objectives that they prefer (cheapest, fastest, safest, etc) and has a potential to reduce congestion on both a temporal and spatial scale. The computation of multi-modal and multi-objective trips is a complicated mathematical problem, as it must integrate and utilize a diverse range of large data sets, including both road network information and public transport schedules, as well as optimising for a number of competing objectives, where fully optimising for one objective, such as travel time, can adversely affect other objectives, such as cost. The relationship between these objectives can also be quite subjective, as their priorities will vary from user to user. This paper will first outline the various data requirements and formats that are needed for the multi-modal multi-objective trip planner to operate, including static information about the physical infrastructure within Brisbane as well as real-time and historical data to predict traffic flow on the road network and the status of public transport. It will then present information on the graph data structures representing the road and public transport networks within Brisbane that are used in the trip planner to calculate optimal routes. This will allow for an investigation into the various shortest path algorithms that have been researched over the last few decades, and provide a foundation for the construction of the Multi-modal Multi-objective Trip Planner by the development of innovative new algorithms that can operate the large diverse data sets and competing objectives.
Resumo:
Two simple and effective control strategies for a multi-axle heavy truck, modified skyhook damping (MSD) control and proportional-integration-derivative (PID) control, were implemented into functional virtual prototype (FVP) model and compared in terms of road friendliness and ride comfort. A four-axle heavy truck-road coupling system model was established using FVP technology and validated through a ride comfort test. Then appropriate passive air suspensions were chosen to replace the rear tandem suspensions of the original truck model for preliminary optimization. The mechanical properties and time lag of dampers were taken into account in simulations of MSD and PID semi-active dampers implemented using MATLAB/Simulink. Through co-simulations with Adams and MATLAB, the effects of semi-active MSD and PID control were analyzed and compared, and control parameters which afforded the best comprehensive performance for each control strategy were chosen. Simulation results indicate that compared with the passive air suspension truck, semi-active MSD control improves both ride comfort and road-friendliness markedly, with optimization ratios of RMS vertical acceleration and RMS tyre force ranging from 10.1% to 44.8%. However, semi-active PID control only reduces vertical vibration of the driver’s seat by 11.1%, 11.1% and 10.9% on A, B and C level roads respectively. Both strategies are robust to the variation of road level.
Resumo:
A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 ◦C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.
Resumo:
Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.
Resumo:
This study investigated the influence of interpersonal coordination tendencies on performance outcomes of 1-vs-1 subphases in youth soccer. Eight male developing soccer players (age: 11.8+0.4 years; training experience: 3.6+1.1 years) performed an in situ simulation of a 1-vs-1 sub-phase of soccer. Data from 82 trials were obtained with motion-analysis techniques, and relative phase used to measure the space-time coordination tendencies of attacker-defender dyads. Approximate entropy (ApEn) was then used to quantify the unpredictability of interpersonal interactions over trials. Results revealed how different modes of interpersonal coordination emerging from attacker-defender dyads influenced the 1-vs-1 performance outcomes. High levels of space-time synchronisation (47%) and unpredictability in interpersonal coordination processes (ApEn: 0.91+0.34) were identified as key features of an attacking player’s success. A lead-lag relation attributed to a defending player (34% around 7308 values) and a more predictable coordination mode (ApEn: 0.65+0.27, P50.001), demonstrated the coordination tendencies underlying the success of defending players in 1-vs-1 sub-phases. These findings revealed how the mutual influence of each player on the behaviour of dyadic systems shaped emergent performance outcomes. More specifically, the findings showed that attacking players should be constrained to exploit the space-time synchrony with defenders in an unpredictable and creative way, while defenders should be encouraged to adopt postures and behaviours that actively constrain the attacker’s actions.
Resumo:
Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.
Resumo:
It is a big challenge to find useful associations in databases for user specific needs. The essential issue is how to provide efficient methods for describing meaningful associations and pruning false discoveries or meaningless ones. One major obstacle is the overwhelmingly large volume of discovered patterns. This paper discusses an alternative approach called multi-tier granule mining to improve frequent association mining. Rather than using patterns, it uses granules to represent knowledge implicitly contained in databases. It also uses multi-tier structures and association mappings to represent association rules in terms of granules. Consequently, association rules can be quickly accessed and meaningless association rules can be justified according to the association mappings. Moreover, the proposed structure is also an precise compression of patterns which can restore the original supports. The experimental results shows that the proposed approach is promising.
Resumo:
Sophisticated models of human social behaviour are fast becoming highly desirable in an increasingly complex and interrelated world. Here, we propose that rather than taking established theories from the physical sciences and naively mapping them into the social world, the advanced concepts and theories of social psychology should be taken as a starting point, and used to develop a new modelling methodology. In order to illustrate how such an approach might be carried out, we attempt to model the low elaboration attitude changes of a society of agents in an evolving social context. We propose a geometric model of an agent in context, where individual agent attitudes are seen to self-organise to form ideologies, which then serve to guide further agent-based attitude changes. A computational implementation of the model is shown to exhibit a number of interesting phenomena, including a tendency for a measure of the entropy in the system to decrease, and a potential for externally guiding a population of agents towards a new desired ideology.
Resumo:
Young novice drivers - that is, drivers aged 16-25 years who are relatively inexperienced in driving on the road and have a novice (Learner, Provisional) driver's licence - have been overrepresented in car crash, injury and fatality statistics around the world for decades. There are numerous persistent characteristics evident in young novice driver crashes, fatalities and offences, including variables relating to the young driver themselves, broader social influences which include their passengers, the car they drive, and when and how they drive, and their risky driving behaviour in particular. Moreover, there are a range of psychosocial factors influencing the behaviour of young novice drivers, including the social influences of parents and peers, and person-related factors such as age-related factors, attitudes, and sensation seeking. Historically, a range of approaches have been developed to manage the risky driving behaviour of young novice drivers. Traditional measures predominantly relying upon education have had limited success in regulating the risky driving behaviour of the young novice driver. In contrast, interventions such as graduated driver licensing (GDL) which acknowledges young novice drivers' limitations - principally pertaining to their chronological and developmental age, and their driving inexperience - have shown to be effective in ameliorating this pervasive public health problem. In practice, GDL is a risk management tool that is designed to reduce driving at risky times (e.g., at night) or in risky driving conditions (e.g., with passengers), while still enabling novice drivers to obtain experience. In this regard, the GDL program in Queensland, Australia, was considerably enhanced in July 2007, and major additions to the program include mandated Learner practice of 100 hours recorded in a logbook, and passenger limits during night driving in the Provisional phase. Road safety researchers have also continued to consider the influential role played by the young driver's psychosocial characteristics, including psychological traits and states. In addition, whilst the majority of road safety user research is epidemiological in nature, contemporary road safety research is increasingly applying psychological and criminological theories. Importantly, such theories not only can guide young novice driver research, they can also inform the development and evaluation of countermeasures targeting their risky driving behaviour. The research is thus designed to explore the self-reported behaviours - and the personal, psychosocial, and structural influences upon the behaviours - of young novice drivers This thesis incorporates three stages of predominantly quantitative research to undertake a comprehensive investigation of the risky driving behaviour of young novices. Risky driving behaviour increases the likelihood of the young novice driver being involved in a crash which may harm themselves or other road users, and deliberate risky driving such as driving in excess of the posted speed limits is the focus of the program of research. The extant literature examining the nature of the risky behaviour of the young novice driver - and the contributing factors for this behaviour - while comprehensive, has not led to the development of a reliable instrument designed specifically to measure the risky behaviour of the young novice driver. Therefore the development and application of such a tool (the Behaviour of Young Novice Drivers Scale, or BYNDS) was foremost in the program of research. In addition to describing the driving behaviours of the young novice, a central theme of this program of research was identifying, describing, and quantifying personal, behavioural, and environmental influences upon young novice driver risky behaviour. Accordingly the 11 papers developed from the three stages of research which comprise this thesis are framed within Bandura's reciprocal determinism model which explicitly considers the reciprocal relationship between the environment, the person, and their behaviour. Stage One comprised the foundation research and operationalised quantitative and qualitative methodologies to finalise the instrument used in Stages Two and Three. The first part of Stage One involved an online survey which was completed by 761 young novice drivers who attended tertiary education institutions across Queensland. A reliable instrument for measuring the risky driving behaviour of young novices was developed (the BYNDS) and is currently being operationalised in young novice driver research in progress at the Centre for Injury Research and Prevention in Philadelphia, USA. In addition, regression analyses revealed that psychological distress influenced risky driving behaviour, and the differential influence of depression, anxiety, sensitivity to punishments and rewards, and sensation seeking propensity were explored. Path model analyses revealed that punishment sensitivity was mediated by anxiety and depression; and the influence of depression, anxiety, reward sensitivity and sensation seeking propensity were moderated by the gender of the driver. Specifically, for males, sensation seeking propensity, depression, and reward sensitivity were predictive of self-reported risky driving, whilst for females anxiety was also influential. In the second part of Stage One, 21 young novice drivers participated in individual and small group interviews. The normative influences of parents, peers, and the Police were explicated. Content analysis supported four themes of influence through punishments, rewards, and the behaviours and attitudes of parents and friends. The Police were also influential upon the risky driving behaviour of young novices. The findings of both parts of Stage One informed the research of Stage Two. Stage Two was a comprehensive investigation of the pre-Licence and Learner experiences, attitudes, and behaviours, of young novice drivers. In this stage, 1170 young novice drivers from across Queensland completed an online or paper survey exploring their experiences, behaviours and attitudes as a pre- and Learner driver. The majority of novices did not drive before they were licensed (pre-Licence driving) or as an unsupervised Learner, submitted accurate logbooks, intended to follow the road rules as a Provisional driver, and reported practicing predominantly at the end of the Learner period. The experience of Learners in the enhanced-GDL program were also examined and compared to those of Learner drivers who progressed through the former-GDL program (data collected previously by Bates, Watson, & King, 2009a). Importantly, current-GDL Learners reported significantly more driving practice and a longer Learner period, less difficulty obtaining practice, and less offence detection and crash involvement than Learners in the former-GDL program. The findings of Stage Two informed the research of Stage Three. Stage Three was a comprehensive exploration of the driving experiences, attitudes and behaviours of young novice drivers during their first six months of Provisional 1 licensure. In this stage, 390 of the 1170 young novice drivers from Stage Two completed another survey, and data collected during Stages Two and Three allowed a longitudinal investigation of self-reported risky driving behaviours, such as GDL-specific and general road rule compliance; risky behaviour such as pre-Licence driving, crash involvement and offence detection; and vehicle ownership, paying attention to Police presence, and punishment avoidance. Whilst the majority of Learner and Provisional drivers reported compliance with GDL-specific and general road rules, 33% of Learners and 50% of Provisional drivers reported speeding by 10-20 km/hr at least occasionally. Twelve percent of Learner drivers reported pre-Licence driving, and these drivers were significantly more risky as Learner and Provisional drivers. Ten percent of males and females reported being involved in a crash, and 10% of females and 18% of males had been detected for an offence, within the first six months of independent driving. Additionally, 75% of young novice drivers reported owning their own car within six months of gaining their Provisional driver's licence. Vehicle owners reported significantly shorter Learner periods and more risky driving exposure as a Provisional driver. Paying attention to Police presence on the roads appeared normative for young novice drivers: 91% of Learners and 72% of Provisional drivers reported paying attention. Provisional drivers also reported they actively avoided the Police: 25% of males and 13% of females; 23% of rural drivers and 15% of urban drivers. Stage Three also allowed the refinement of the risky behaviour measurement tool (BYNDS) created in Stage One; the original reliable 44-item instrument was refined to a similarly reliable 36-item instrument. A longitudinal exploration of the influence of anxiety, depression, sensation seeking propensity and reward sensitivity upon the risky behaviour of the Provisional driver was also undertaken using data collected in Stages Two and Three. Consistent with the research of Stage One, structural equation modeling revealed anxiety, reward sensitivity and sensation seeking propensity predicted self-reported risky driving behaviour. Again, gender was a moderator, with only reward sensitivity predicting risky driving for males. A measurement model of Akers' social learning theory (SLT) was developed containing six subscales operationalising the four constructs of differential association, imitation, personal attitudes, and differential reinforcement, and the influence of parents and peers was captured within the items in a number of these constructs. Analyses exploring the nature and extent of the psychosocial influences of personal characteristics (step 1), Akers' SLT (step 2), and elements of the prototype/willingness model (PWM) (step 3) upon self-reported speeding by the Provisional driver in a hierarchical multiple regression model found the following significant predictors: gender (male), car ownership (own car), reward sensitivity (greater sensitivity), depression (greater depression), personal attitudes (more risky attitudes), and speeding (more speeding) as a Learner. The research findings have considerable implications for road safety researchers, policy-makers, mental health professionals and medical practitioners alike. A broad range of issues need to be considered when developing, implementing and evaluating interventions for both the intentional and unintentional risky driving behaviours of interest. While a variety of interventions have been historically utilised, including education, enforcement, rehabilitation and incentives, caution is warranted. A multi-faceted approach to improving novice road safety is more likely to be effective, and new and existing countermeasures should capitalise on the potential of parents, peers and Police to be a positive influence upon the risky behaviour of young novice drivers. However, the efficacy of some interventions remains undetermined at this time. Notwithstanding this caveat, countermeasures such as augmenting and strengthening Queensland's GDL program and targeting parents and adolescents particularly warrant further attention. The findings of the research program suggest that Queensland's current-GDL can be strengthened by increasing compliance of young novice drivers with existing conditions and restrictions. The rates of speeding reported by the young Learner driver are particularly alarming for a number of reasons. The Learner is inexperienced in driving, and travelling in excess of speed limits places them at greater risk as they are also inexperienced in detecting and responding appropriately to driving hazards. In addition, the Learner period should provide the foundation for a safe lifetime driving career, enabling the development and reinforcement of non-risky driving habits. Learners who sped reported speeding by greater margins, and at greater frequencies, when they were able to drive independently. Other strategies could also be considered to enhance Queensland's GDL program, addressing both the pre-Licence adolescent and their parents. Options that warrant further investigation to determine their likely effectiveness include screening and treatment of novice drivers by mental health professionals and/or medical practitioners; and general social skills training. Considering the self-reported pre-licence driving of the young novice driver, targeted education of parents may need to occur before their child obtains a Learner licence. It is noteworthy that those participants who reported risky driving during the Learner phase also were more likely to report risky driving behaviour during the Provisional phase; therefore it appears vital that the development of safe driving habits is encouraged from the beginning of the novice period. General education of parents and young novice drivers should inform them of the considerably-increased likelihood of risky driving behaviour, crashes and offences associated with having unlimited access to a vehicle in the early stages of intermediate licensure. Importantly, parents frequently purchase the car that is used by the Provisional driver, who typically lives at home with their parents, and therefore parents are ideally positioned to monitor the journeys of their young novice driver during this early stage of independent driving. Parents are pivotal in the development of their driving child: they are models who are imitated and are sources of attitudes, expectancies, rewards and punishments; and they provide the most driving instruction for the Learner. High rates of self-reported speeding by Learners suggests that GDL programs specifically consider the nature of supervision during the Learner period, encouraging supervisors to be vigilant to compliance with general and GDL-specific road rules, and especially driving in excess of speed limit. Attitudes towards driving are formed before the adolescent reaches the age when they can be legally licensed. Young novice drivers with risky personal attitudes towards driving reported more risky driving behaviour, suggesting that countermeasures should target such attitudes and that such interventions might be implemented before the adolescent is licensed. The risky behaviours and attitudes of friends were also found to be influential, and given that young novice drivers tend to carry their friends as their passengers, a group intervention such as provided in a school class context may prove more effective. Social skills interventions that encourage the novice to resist the negative influences of their friends and their peer passengers, and to not imitate the risky driving behaviour of their friends, may also be effective. The punishments and rewards anticipated from and administered by friends were also found to influence the self-reported risky behaviour of the young novice driver; therefore young persons could be encouraged to sanction the risky, and to reward the non-risky, driving of their novice friends. Adolescent health programs and related initiatives need to more specifically consider the risks associated with driving. Young novice drivers are also adolescents, a developmental period associated with depression and anxiety. Depression, anxiety, and sensation seeking propensity were found to be predictive of risky driving; therefore interventions targeting psychological distress, whilst discouraging the expression of sensation seeking propensity whilst driving, warrant development and trialing. In addition, given that reward sensitivity was also predictive, a scheme which rewards novice drivers for safe driving behaviour - rather than rewarding the novice through emotional and instrumental rewards for risky driving behaviour - requires further investigation. The Police were also influential in the risky driving behaviour of young novices. Young novice drivers who had been detected for an offence, and then avoided punishment, reacted differentially, with some drivers appearing to become less risky after the encounter, whilst for others their risky behaviour appeared to be reinforced and therefore was more likely to be performed again. Such drivers saw t
Resumo:
This extended abstract summarizes the state-of-the-art solution to the structuring problem for models that describe existing real world or envisioned processes. Special attention is devoted to models that allow for the true concurrency semantics. Given a model of a process, the structuring problem deals with answering the question of whether there exists another model that describes the process and is solely composed of structured patterns, such as sequence, selection, option for simultaneous execution, and iteration. Methods and techniques for structuring developed by academia as well as products and standards proposed by industry are discussed. Expectations and recommendations on the future advancements of the structuring problem are suggested.
Resumo:
Growing community concerns about the ecological, social, cultural and economic impact of housing and urban projects poses new challenges for those who have to deliver them. It is important that these concerns are addressed as part of the community engagement processes on projects. Community engagement is traditionally perceived as the purview of planners and disconnected from the building construction process. This is despite most project approval processes mandating on-going community engagement over the project’s entire lifetime. There is evidence that point to a culture of ambiguity and ambivalence among building professionals about their roles, responsibilities and expectations of community engagement during the construction phase of projects. This has contributed to a culture of distrust between communities and the construction industry. There is a clear need to build capacity among building professionals to empower them as active participants in community engagement processes which can promote better project outcomes and minimise delays and conflicts. This paper describes a process that utilises the Theory of Planned Behaviour as a framework to equip building professionals with the skills they need to engage effectively with local communities during the construction phase of projects.
Resumo:
A novel Glass Fibre Reinforced Polymer (GFRP) sandwich panel was developed by an Australian manufacturer for civil engineering applications. This research is motivated by the new applications of GFRP sandwich structures in civil engineering such as slab, beam, girder and sleeper. An optimisation methodology is developed in this work to enhance the design of GFRP sandwich beams. The design of single and glue laminated GFRP sandwich beam were conducted by using numerical optimisation. The numerical multi-objective optimisation considered a design two objectives simultaneously. These objectives are cost and mass. The numerical optimisation uses the Adaptive Range Multi-objective Genetic Algorithm (ARMOGA) and Finite Element (FE) method. Trade-offs between objectives was found during the optimisation process. Multi-objective optimisation shows a core to skin mass ratio equal to 3.68 for the single sandwich beam cross section optimisation and it showed that the optimum core to skin thickness ratio is 11.0.
Resumo:
Recent advances in computational geodynamics are applied to explore the link between Earth’s heat, its chemistry and its mechanical behavior. Computational thermal-mechanical solutions are now allowing us to understand Earth patterns by solving the basic physics of heat transfer. This approach is currently used to solve basic convection patterns of terrestrial planets. Applying the same methodology to smaller scales delivers promising similarities between observed and predicted structures which are often the site of mineral deposits. The new approach involves a fully coupled solution to the energy, momentum and continuity equations of the system at all scales, allowing the prediction of fractures, shear zones and other typical geological patterns out of a randomly perturbed initial state. The results of this approach are linking a global geodynamic mechanical framework over regional-scale mineral deposits down to the underlying micro-scale processes. Ongoing work includes the challenge of incorporating chemistry into the formulation.