987 resultados para Modular Lattice


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using path-integral Monte Carlo calculations, we have calculated ring exchange frequencies in the bcc phase of solid (3)He for densities from melting to the highest stable density. We evaluate 42 different exchange frequencies from two atoms up to eight atoms and find their Gruneisen exponents. Using a fit to these frequencies, we calculate the contribution to the Curie-Weiss temperature, Theta(CW), and upper critical magnetic field, B(c2), for even longer exchanges using a lattice Monte Carlo procedure. We find that contributions from seven-and eight-particle exchanges make a significant contribution to Theta(CW) and B(c2) at melting density. Comparison with experimental data is given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron mobility was studied in lattice-matched short-period InGaAs/InP superlattices as a function of the width of the wells. The decreasing mobility with decreasing well width was shown to occur due to the interface roughness. The roughnesses of InGaAs/InP and GaAs/AlGaAs interfaces were compared. Much smoother InGaAs/InP interfaces resulted in higher electron mobility limited by interface roughness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the finite-size corrections to entanglement in quantum critical systems. By using conformal symmetry and density functional theory, we discuss the structure of the finite-size contributions to a general measure of ground state entanglement, which are ruled by the central charge of the underlying conformal field theory. More generally, we show that all conformal towers formed by an infinite number of excited states (as the size of the system L -> infinity) exhibit a unique pattern of entanglement, which differ only at leading order (1/L)(2). In this case, entanglement is also shown to obey a universal structure, given by the anomalous dimensions of the primary operators of the theory. As an illustration, we discuss the behavior of pairwise entanglement for the eigenspectrum of the spin-1/2 XXZ chain with an arbitrary length L for both periodic and twisted boundary conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertices are of central importance for constructing QCD bound states out of the individual constituents of the theory, i.e. quarks and gluons. In particular, the determination of three-point vertices is crucial in nonperturbative investigations of QCD. We use numerical simulations of lattice gauge theory to obtain results for the 3-point vertices in Landau-gauge SU(2) Yang-Mills theory in three and four space-time dimensions for various kinematic configurations. In all cases considered, the ghost-gluon vertex is found to be essentially tree-level-like, while the three-gluon vertex is suppressed at intermediate momenta. For the smallest physical momenta, reachable only in three dimensions, we find that some of the three-gluon-vertex tensor structures change sign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the performance of a variant of Axelrod's model for dissemination of culture-the Adaptive Culture Heuristic (ACH)-on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size F by a Boolean Binary Perceptron. In this heuristic, N agents, characterized by binary strings of length F which represent possible solutions to the optimization problem, are fixed at the sites of a square lattice and interact with their nearest neighbors only. The interactions are such that the agents' strings (or cultures) become more similar to the low-cost strings of their neighbors resulting in the dissemination of these strings across the lattice. Eventually the dynamics freezes into a homogeneous absorbing configuration in which all agents exhibit identical solutions to the optimization problem. We find through extensive simulations that the probability of finding the optimal solution is a function of the reduced variable F/N(1/4) so that the number of agents must increase with the fourth power of the problem size, N proportional to F(4), to guarantee a fixed probability of success. In this case, we find that the relaxation time to reach an absorbing configuration scales with F(6) which can be interpreted as the overall computational cost of the ACH to find an optimal set of weights for a Boolean binary perceptron, given a fixed probability of success.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The temperature and compositional dependences of thermo- optical properties of neodymium doped yttrium aluminum garnet (YAG) crystals and fine grain ceramics have been systematically investigated by means of time- resolved thermal lens spectrometry. We have found that Nd:YAG ceramics show a reduced thermal diffusivity compared to Nd:YAG single crystals in the complete temperature range investigated (80-300 K). The analysis of the time- resolved luminescent properties of Nd(3+) has revealed that the reduction in the phonon mean free path taking place in Nd:YAG ceramics cannot be associated with an increment in the density of lattice defects, indicating that phonon scattering at grain boundaries is the origin of the observed reduction in the thermal diffusivity of Nd: YAG ceramics. Finally, our results showed the ability of the time- resolved thermal lens to determine and optimize the thermo- optical properties of Nd: YAG ceramic based lasers. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2975335]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present rigorous upper and lower bounds for the zero-momentum gluon propagator D(0) of Yang-Mills theories in terms of the average value of the gluon field. This allows us to perform a controlled extrapolation of lattice data to infinite volume, showing that the infrared limit of the Landau-gauge gluon propagator in SU(2) gauge theory is finite and nonzero in three and in four space-time dimensions. In the two-dimensional case, we find D(0)=0, in agreement with Maas. We suggest an explanation for these results. We note that our discussion is general, although we apply our analysis only to pure gauge theory in the Landau gauge. Simulations have been performed on the IBM supercomputer at the University of Sao Paulo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order for solar energy to serve as a primary energy source, it must be paired with energy storage on a massive scale. At this scale, solar fuels and energy storage in chemical bonds is the only practical approach. Solar fuels are produced in massive amounts by photosynthesis with the reduction of CO(2) by water to give carbohydrates but efficiencies are low. In photosystem II (PSII), the oxygen-producing site for photosynthesis, light absorption and sensitization trigger a cascade of coupled electron-proton transfer events with time scales ranging from picoseconds to microseconds. Oxidative equivalents are built up at the oxygen evolving complex (OEC) for water oxidation by the Kok cycle. A systematic approach to artificial photo synthesis is available based on a ""modular approach"" in which the separate functions of a final device are studied separately, maximized for rates and stability, and used as modules in constructing integrated devices based on molecular assemblies, nanoscale arrays, self-assembled monolayers, etc. Considerable simplification is available by adopting a ""dyesensitized photoelectrosynthesis cell"" (DSPEC) approach inspired by dye-sensitized solar cells (DSSCs). Water oxidation catalysis is a key feature, and significant progress has been made in developing a single-site solution and surface catalysts based on polypyridyl complexes of Ru. In this series, ligand variations can be used to tune redox potentials and reactivity over a wide range. Water oxidation electrocatalysis has been extended to chromophore-catalyst assemblies for both water oxidation and DSPEC applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asymmetric unit of the title compound, Na(+)center dot C(6)H(10)NS(2) center dot 2H(2)O, is composed of a sodium cation, a piperidinedithiocarbamate anion which exhibits positional disorder, and two lattice water molecules. The atoms of the piperidine ring are divided over two sites with occupancy factors of 0.554 (6) and 0.446 (6). In the crystal, the sodium cation (coordination number of 6) and the piperidinedithiocarbamate anion are linked, forming an infinite two-dimensional network extending parallel to (001). O-H center dot center dot center dot S hydrogen bonds, involving the lattice water molecules, also aid in stabilizing the crystal sructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study a class of lattice field theories in two dimensions that includes gauge theories. We show that in these theories it is possible to implement a broader notion of local symmetry, based on semisimple Hopf algebras. A character expansion is developed for the quasitopological field theories, and partition functions are calculated with this tool. Expected values of generalized Wilson loops are defined and studied with the character expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-purity niobium powder can be produced via the hydrogenation and dehydrogenation processes The present work aimed at the effect of temperature and cooling rate conditions on the niobium hydrogenation process using hydrogen gas The hydrogen contents of the materials were evaluated by weight change and chemical analysis X ray diffraction (XRD) was performed to identify and determine the lattice parameters of the formed hydride phases No hydrogenation took place under isothermal conditions only during cooling of the materials Significant hydrogenation occurred in the 500 C and 700 C experiments leading to the formation of a beta NbH(x) single phase material (C) 2010 Elsevier Ltd All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A niobium single crystal was subjected to equal channel angular pressing (ECAP) at room temperature after orienting the crystal such that [1 -1 -1] ayen ND, [0 1 -1] ayen ED, and [-2 -1 -1] ayen TD. Electron backscatter diffraction (EBSD) was used to characterize the microstructures both on the transverse and the longitudinal sections of the deformed sample. After one pass of ECAP the single crystal exhibits a group of homogeneously distributed large misorientation sheets and a well formed cell structure in the matrix. The traces of the large misorientation sheets match very well with the most favorably oriented slip plane and one of the slip directions is macroscopically aligned with the simple shear plane. The lattice rotation during deformation was quantitatively estimated through comparison of the orientations parallel to three macroscopic axes before and after deformation. An effort has been made to link the microstructure with the initial crystal orientation. Collinear slip systems are believed to be activated during deformation. The full constraints Taylor model was used to simulate the orientation evolution during ECAP. The result matched only partially with the experimental observation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon nitride ceramics were sintered using Y(2)O(3)-Al(2)O(3) or E(2)O(3)-Al(2)O(3) (E(2)O(3) denotes a mixed oxide Of Y(2)O(3) and rare-earth oxides) as sintering additives. The intergranular phases formed after sintering was investigated using high-resolution X-ray diffraction (HRXRD). The use of synchrotron radiation enabled high angular resolution and a high signal to background ratio. Besides the appearance Of beta-Si(3)N(4) phase the intergranular phases Y(3)Al(5)O(12) (YAG) and Y(2)SiO(5) were identified in both samples. The refinement of the structural parameters by the Rietveld method indicated similar crystalline structure Of beta-Si(3)N(4) for both systems used as sintering additive. On the other hand, the intergranular phases Y(3)Al(5)O(12) and Y(2)SiO(5) shown a decrease of the lattice parameters, when E(2)O(3) was used as additive, indicating the formation of solid solutions of E(3)Al(5)O(12) and E(2)SiO(5), respectively. (C) 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a detailed numerical investigation is presented, seeking to enhance the birefringence effect by using D-shaped microstructured optical fibers (MOFs). We studied a D-shape core geometry associated with three different air-hole configurations: circular and elliptical, aligned with either the x-direction or the y-direction. Results have shown that ultrahigh birefringence MOFs, with B values of the order of 10(-2) for a wide range of wavelengths, can be obtained. The highest birefringence B was equal 3.97 x 10(-2), a value found for a D-MOF (circular holes) at 1550 nm. To the best of our knowledge, this is the highest theoretical value in the published literature.