894 resultados para Model-Based Design


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Forests have a prominent role in carbon storage and sequestration. Anthropogenic forcing has the potential to accelerate climate change and alter the distribution of forests. How forests redistribute spatially and temporally in response to climate change can alter their carbon sequestration potential. The driving question for this research was: How does plant migration from climate change impact vegetation distribution and carbon sequestration potential over continental scales? Large-scale simulation of the equilibrium response of vegetation and carbon from future climate change has shown relatively modest net gains in sequestration potential, but studies of the transient response has been limited to the sub-continent or landscape scale. The transient response depends on fine scale processes such as competition, disturbance, landscape characteristics, dispersal, and other factors, which makes it computational prohibitive at large domain sizes. To address this, this research used an advanced mechanistic model (Ecosystem Demography Model, ED) that is individually based, but pseudo-spatial, that reduces computational intensity while maintaining the fine scale processes that drive the transient response. First, the model was validated against remote sensing data for current plant functional type distribution in northern North America with a current climatology, and then a future climatology was used to predict the potential equilibrium redistribution of vegetation and carbon from future climate change. Next, to enable transient calculations, a method was developed to simulate the spatially explicit process of dispersal in pseudo-spatial modeling frameworks. Finally, the new dispersal sub-model was implemented in the mechanistic ecosystem model, and a model experimental design was designed and completed to estimate the transient response of vegetation and carbon to climate change. The potential equilibrium forest response to future climate change was found to be large, with large gross changes in distribution of plant functional types and comparatively smaller changes in net carbon sequestration potential for the region. However, the transient response was found to be on the order of centuries, and to depend strongly on disturbance rates and dispersal distances. Future work should explore the impact of species-specific disturbance and dispersal rates, landscape fragmentation, and other processes that influence migration rates and have been simulated at the sub-continent scale, but now at continental scales, and explore a range of alternative future climate scenarios as they continue to be developed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the first part of this thesis we search for beyond the Standard Model physics through the search for anomalous production of the Higgs boson using the razor kinematic variables. We search for anomalous Higgs boson production using proton-proton collisions at center of mass energy √s=8 TeV collected by the Compact Muon Solenoid experiment at the Large Hadron Collider corresponding to an integrated luminosity of 19.8 fb-1.

In the second part we present a novel method for using a quantum annealer to train a classifier to recognize events containing a Higgs boson decaying to two photons. We train that classifier using simulated proton-proton collisions at √s=8 TeV producing either a Standard Model Higgs boson decaying to two photons or a non-resonant Standard Model process that produces a two photon final state.

The production mechanisms of the Higgs boson are precisely predicted by the Standard Model based on its association with the mechanism of electroweak symmetry breaking. We measure the yield of Higgs bosons decaying to two photons in kinematic regions predicted to have very little contribution from a Standard Model Higgs boson and search for an excess of events, which would be evidence of either non-standard production or non-standard properties of the Higgs boson. We divide the events into disjoint categories based on kinematic properties and the presence of additional b-quarks produced in the collisions. In each of these disjoint categories, we use the razor kinematic variables to characterize events with topological configurations incompatible with typical configurations found from standard model production of the Higgs boson.

We observe an excess of events with di-photon invariant mass compatible with the Higgs boson mass and localized in a small region of the razor plane. We observe 5 events with a predicted background of 0.54 ± 0.28, which observation has a p-value of 10-3 and a local significance of 3.35σ. This background prediction comes from 0.48 predicted non-resonant background events and 0.07 predicted SM higgs boson events. We proceed to investigate the properties of this excess, finding that it provides a very compelling peak in the di-photon invariant mass distribution and is physically separated in the razor plane from predicted background. Using another method of measuring the background and significance of the excess, we find a 2.5σ deviation from the Standard Model hypothesis over a broader range of the razor plane.

In the second part of the thesis we transform the problem of training a classifier to distinguish events with a Higgs boson decaying to two photons from events with other sources of photon pairs into the Hamiltonian of a spin system, the ground state of which is the best classifier. We then use a quantum annealer to find the ground state of this Hamiltonian and train the classifier. We find that we are able to do this successfully in less than 400 annealing runs for a problem of median difficulty at the largest problem size considered. The networks trained in this manner exhibit good classification performance, competitive with the more complicated machine learning techniques, and are highly resistant to overtraining. We also find that the nature of the training gives access to additional solutions that can be used to improve the classification performance by up to 1.2% in some regions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to identify physiological markers in superficially scalded 'Rocha' pear (Pyrus communis L 'Rocha') that would relate to chlorophyll a fluorescence (CF), allowing a non-invasive diagnosis of the disorder. Conditions chosen before shelf life provided two fruit groups with different developing patterns and severity of superficial scald: T fruit fully developed the disorder in storage, while C fruit developed it progressively throughout shelf life. Principal component analysis (PCA) of all the measured variables, and simple linear correlations among several major parameters and scald index (SI)/shelf life showed that scald and ripening/aging were concurring processes, and that it was not possible to isolate a particular variable that could deliver a direct non-invasive diagnosis of the disorder. For both fruit groups the SI resulted from the balance between the reducing power (OD200) and the content of conjugated trienols (CTos) and alpha-farnesene (alpha-Farn) in the fruit peel. At OD200 > 150 there was a linear relationship between CTos and OD200, suggesting that the level of antioxidants was self-adjusted in order to compensate the CTos level. However, at OD200 < 150 this relationship disappeared. A consistent linear relationship between dos and alpha-Farn existed throughout shelf life in both fruit groups, contrarily to the early storage stage, when those compounds do not relate linearly. The CF variables F-0, F-v/F-m, and the colorimetric variables, L* and h degrees were used in multi-linear regressions with other physiological variables. The regressions were made on one of the fruit groups and validated through the other. Reliable regressions to alpha-Farn and CTos were obtained (R approximate to 0.6; rmsec approximate to rmsep). Our results suggest that a model based on CF and colorimetric parameters could be used to diagnose non-invasively both the contents and the relationship between alpha-Farn and CTos and hence the stage of scald development. (C) 2011 Elsevier By. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As unmanned autonomous vehicles (UAVs) are being widely utilized in military and civil applications, concerns are growing about mission safety and how to integrate dierent phases of mission design. One important barrier to a coste ective and timely safety certication process for UAVs is the lack of a systematic approach for bridging the gap between understanding high-level commander/pilot intent and implementation of intent through low-level UAV behaviors. In this thesis we demonstrate an entire systems design process for a representative UAV mission, beginning from an operational concept and requirements and ending with a simulation framework for segments of the mission design, such as path planning and decision making in collision avoidance. In this thesis, we divided this complex system into sub-systems; path planning, collision detection and collision avoidance. We then developed software modules for each sub-system

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to identify physiological markers in superficially scalded 'Rocha' pear (Pyrus communis L 'Rocha') that would relate to chlorophyll a fluorescence (CF), allowing a non-invasive diagnosis of the disorder. Conditions chosen before shelf life provided two fruit groups with different developing patterns and severity of superficial scald: T fruit fully developed the disorder in storage, while C fruit developed it progressively throughout shelf life. Principal component analysis (PCA) of all the measured variables, and simple linear correlations among several major parameters and scald index (SI)/shelf life showed that scald and ripening/aging were concurring processes, and that it was not possible to isolate a particular variable that could deliver a direct non-invasive diagnosis of the disorder. For both fruit groups the SI resulted from the balance between the reducing power (OD200) and the content of conjugated trienols (CTos) and alpha-farnesene (alpha-Farn) in the fruit peel. At OD200 > 150 there was a linear relationship between CTos and OD200, suggesting that the level of antioxidants was self-adjusted in order to compensate the CTos level. However, at OD200 < 150 this relationship disappeared. A consistent linear relationship between dos and alpha-Farn existed throughout shelf life in both fruit groups, contrarily to the early storage stage, when those compounds do not relate linearly. The CF variables F-0, F-v/F-m, and the colorimetric variables, L* and h degrees were used in multi-linear regressions with other physiological variables. The regressions were made on one of the fruit groups and validated through the other. Reliable regressions to alpha-Farn and CTos were obtained (R approximate to 0.6; rmsec approximate to rmsep). Our results suggest that a model based on CF and colorimetric parameters could be used to diagnose non-invasively both the contents and the relationship between alpha-Farn and CTos and hence the stage of scald development. (C) 2011 Elsevier By. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The focus of the current dissertation is to study qualitatively the underlying physics of vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the KLE method. We carried out a long series of numerical experiments in the cases of flow around the cylinder at low Reynolds numbers. The study of flow at low Reynolds numbers provides an insight in the fluid physics and also plays a critical role when applying to stalled turbine rotors. Many of the conclusions about the qualitative nature of the physical mechanisms characterizing vortex formation, shedding and further interaction analyzed here at low Re could be extended to other Re regimes and help to understand the separation of the boundary layers in airfoils and other aerodynamic surfaces. In the long run, it aims to provide a better understanding of the complex multi-physics problems involving fluid-structure-control interaction through improved mathematical computational models of the multi-physics process. Besides the scientific conclusions produced, the research work on streamlined and bluff-body condition will also serve as a valuable guide for the future design of blade aerodynamics and the placement of wind turbines and hydrakinetic turbines, increasing the efficiency in the use of expensive workforce, supplies, and infrastructure. After the introductory section describing the main fields of application of wind power and hydrokinetic turbines, we describe the main features and theoretical background of the numerical method used here. Then, we present the analysis of the numerical experimentation results for the oscillatory regime right before the onset of vortex shedding for circular cylinders. We verified the wake length of the closed near-wake behind the cylinder and analysed the decay of the wake at the wake formation region, and then studied the St-Re relationship at the Reynolds numbers before the wake sheds compared to the experimental data. We found a theoretical model that describes the time evolution of the amplitude of fluctuations in the vorticity field on the twin vortex wake, which accurately matches the numerical results in terms of the frequency of the oscillation and rate of decay. We also proposed a model based on an analog circuit that is able to interpret the concerning flow by reducing the number of degrees of freedom. It follows the idea of the non-linear oscillator and resembles the dynamics mechanism of the closed near-wake with a common configured sine wave oscillator. This low-dimensional circuital model may also help to understand the underlying physical mechanisms, related to vorticity transport, that give origin to those oscillations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Simarouba glauca, a non-edible oilseed crop native to South Florida, is gaining popularity as a feedstock for the production of biodiesel. The University of Agriculture Sciences in Bangalore, India has developed a biodiesel production model based on the principles of decentralization, small scales, and multiple fuel sources. Success of such a program depends on conversion efficiencies at multiple stages. The conversion efficiency of the field-level, decentralized production model was compared with the in-laboratory conversion efficiency benchmark. The study indicated that the field-level model conversion efficiency was less than that of the lab-scale set up. The fuel qualities and characteristics of the Simarouba glauca biodiesel were tested and found to be the standards required for fuel designation. However, this research suggests that for Simarouba glauca to be widely accepted as a biodiesel feedstock further investigation is still required.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growth of social networking platforms has drawn a lot of attentions to the need for social computing. Social computing utilises human insights for computational tasks as well as design of systems that support social behaviours and interactions. One of the key aspects of social computing is the ability to attribute responsibility such as blame or praise to social events. This ability helps an intelligent entity account and understand other intelligent entities’ social behaviours, and enriches both the social functionalities and cognitive aspects of intelligent agents. In this paper, we present an approach with a model for blame and praise detection in text. We build our model based on various theories of blame and include in our model features used by humans determining judgment such as moral agent causality, foreknowledge, intentionality and coercion. An annotated corpus has been created for the task of blame and praise detection from text. The experimental results show that while our model gives similar results compared to supervised classifiers on classifying text as blame, praise or others, it outperforms supervised classifiers on more finer-grained classification of determining the direction of blame and praise, i.e., self-blame, blame-others, self-praise or praise-others, despite not using labelled training data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assessment processes are essential to guarantee quality and continuous improvement of software in healthcare, as they measure software attributes in their lifecycle, verify the degree of alignment between the software and its objectives and identify unpredicted events. This article analyses the use of an assessment model based on software metrics for three healthcare information systems from a public hospital that provides secondary and tertiary care in the region of Ribeirão Preto. Compliance with the metrics was investigated using questionnaires in guided interviews of the system analysts responsible for the applications. The outcomes indicate that most of the procedures specified in the model can be adopted to assess the systems that serves the organization, particularly in the attributes of compatibility, reliability, safety, portability and usability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Las teorías administrativas se han basado, casi sin excepción, en los fundamentos y los modelos de la ciencia clásica (particularmente, en los modelos de la física newtoniana). Sin embargo, las organizaciones actualmente se enfrentan a un mundo globalizado, plagado de información (y no necesariamente conocimiento), hiperconectado, dinámico y cargado de incertidumbre, por lo que muchas de las teorías pueden mostrar limitaciones para las organizaciones. Y quizá no por la estructura, la lógica o el alcance de las mismas, sino por la falta de criterios que justifiquen su aplicación. En muchos casos, las organizaciones siguen utilizando la intuición, las suposiciones y las verdades a medias en la toma de decisiones. Este panorama pone de manifiesto dos hechos: de un lado, la necesidad de buscar un método que permita comprender las situaciones de cada organización para apoyar la toma de decisiones. De otro lado, la necesidad de potenciar la intuición con modelos y técnicas no tradicionales (usualmente provenientes o inspiradas por la ingeniería). Este trabajo busca anticipar los pilares de un posible método que permita apoyar la toma de decisiones por medio de la simulación de modelos computacionales, utilizando las posibles interacciones entre: la administración basada en modelos, la ciencia computacional de la organización y la ingeniería emergente.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main goal of this paper is to expose and validate a methodology to design efficient automatic controllers for irrigation canals, based on the Saint-Venant model. This model-based methodology enables to design controllers at the design stage (when the canal is not already built). The methodology is applied on an experimental canal located in Portugal. First the full nonlinear PDE model is calibrated, using a single steady-state experiment. The model is then linearized around a functioning point, in order to design linear PI controllers. Two classical control strategies are tested (local upstream control and distant downstream control) and compared on the canal. The experimental results show the effectiveness of the model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to compute a swimming performance confirmatory model based on biomechanical parameters. The sample included 100 young swimmers (overall: 12.3 ± 0.74 years; 49 boys: 12.5 ± 0.76 years; 51 girls: 12.2 ± 0.71 years; both genders in Tanner stages 1–2 by self-report) participating on a regular basis in regional and national-level events. The 100 m freestyle event was chosen as the performance indicator. Anthropometric (arm span), strength (throwing velocity), power output (power to overcome drag), kinematic (swimming velocity) and efficiency (propelling efficiency) parameters were measured and included in the model. The path-flow analysis procedure was used to design and compute the model. The anthropometric parameter (arm span) was excluded in the final model, increasing its goodness-of-fit. The final model included the throw velocity, power output, swimming velocity and propelling efficiency. All links were significant between the parameters included, but the throw velocity–power output. The final model was explained by 69% presenting a reasonable adjustment (model’s goodness-of-fit; x2/df = 3.89). This model shows that strength and power output parameters do play a mediator and meaningful role in the young swimmers’ performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Our goal in this paper is to extend previous results obtained for Newtonian and secondgrade fluids to third-grade fluids in the case of an axisymmetric, straight, rigid and impermeable tube with constant cross-section using a one-dimensional hierarchical model based on the Cosserat theory related to fluid dynamics. In this way we can reduce the full threedimensional system of equations for the axisymmetric unsteady motion of a non-Newtonian incompressible third-grade fluid to a system of equations depending on time and on a single spatial variable. Some numerical simulations for the volume flow rate and the the wall shear stress are presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a process for the classifi cation of new residential electricity customers. The current state of the art is extended by using a combination of smart metering and survey data and by using model-based feature selection for the classifi cation task. Firstly, the normalized representative consumption profi les of the population are derived through the clustering of data from households. Secondly, new customers are classifi ed using survey data and a limited amount of smart metering data. Thirdly, regression analysis and model-based feature selection results explain the importance of the variables and which are the drivers of diff erent consumption profi les, enabling the extraction of appropriate models. The results of a case study show that the use of survey data signi ficantly increases accuracy of the classifi cation task (up to 20%). Considering four consumption groups, more than half of the customers are correctly classifi ed with only one week of metering data, with more weeks the accuracy is signifi cantly improved. The use of model-based feature selection resulted in the use of a signifi cantly lower number of features allowing an easy interpretation of the derived models.