945 resultados para Microtubule-associated Protein-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RMI1 (BLM-Associated Protein 75 or Blap75) is highly conserved from yeast to human. Previous studies have shown that hRMI1 is required for BLM/TopoIIIα/RMI1 complex stability and function. However, in vivo functions of RMI1 remain elusive. To address this question, I generated RMI1 knockout mice by homologous replacement targeting. While RMI1+/- mice showed no obvious phenotype, deletion of both RMI1 alleles leads to early embryonic lethality before implantation. I then generated RMI1/p53 double knockout mice. After ionizing radiation treatment at 4Gy, RMI1/p53 double-heterzygous mice showed shortened tumor latency and aggressive tumor types when comparing with wild type, RMI1+/- and p53+/- control cohorts. My study suggests a dual-functional role of RMI1 in early embryonic development and tumor suppression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have demonstrated that ribbon synapses in the retina do not contain the t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor) syntaxin 1A that is found in conventional synapses of the nervous system. In contrast, ribbon synapses of the retina contain the related isoform syntaxin 3. In addition to its localization in ribbon synapses, syntaxin 3 is also found in nonneuronal cells, where it has been implicated in the trafficking of transport vesicles to the apical plasma membrane of polarized cells. The syntaxin 3 gene codes for four different splice forms, syntaxins 3A, 3B, 3C, and 3D. We demonstrate here by using analysis of EST databases, RT-PCR, in situ hybridization, and Northern blot analysis that cells in the mouse retina express only syntaxin 3B. In contrast, nonneuronal tissues, such as kidney, express only syntaxin 3A. The two major syntaxin isoforms (3A and 3B) have an identical N-terminal domain but differ in the C-terminal half of the SNARE domain and the C-terminal transmembrane domain. These two domains are thought to be directly involved in synaptic vesicle fusion. The interaction of syntaxin 1A and syntaxin 3B with other synaptic proteins was examined. We found that both proteins bind Munc18/N-sec1 with similar affinity. In contrast, syntaxin 3B had a much lower binding affinity for the t-SNARE SNAP25 compared with syntaxin 1A. By using an in vitro fusion assay, we could demonstrate that vesicles containing syntaxin 3B and SNAP25 could fuse with vesicles containing synaptobrevin2/VAMP2, demonstrating that syntaxin 3B can function as a t-SNARE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monocyte developmental heterogeneity is reflected at the cellular level by differential activation competence, at the molecular level by differential regulation of gene expression. LPS activates monocytes to produce tumor necrosis factor-$\alpha$ (TNF). Events occurring at the molecular level necessary for TNF regulation have not been elucidated, but depend both on activation signals and the maturation state of the cell: Peripheral blood monocytes produce TNF upon LPS stimulation, but only within the first 72 hours of culture. Expression of c-fos is associated with monocytic differentiation and activation; the fos-associated protein, c-jun, is also expressed during monocyte activation. Increased cAMP levels are associated with down regulation of macrophage function, including LPS-induced TNF transcription. Due to these associations, we studied a region of the TNF promoter which resembles the binding sites for both AP-1(fos/jun) and CRE-binding protein (or ATF) in order to identify potential molecular markers defining activation competent populations of monocytic cells.^ Nuclear protein binding studies using extracts from THP-1 monocytic cells stimulated with LPS, which stimulates, or dexamethasone (Dex) or pentoxyfilline (PTX), which inhibit TNF production, respectively, suggest that a low mobility doublet complex may be involved in regulation through this promoter region. PTX or Dex increase binding of these complexes equivalently over untreated cells; approximately two hours after LPS induction, the upper complex is undetectable. The upper complex is composed of ATF2 (CRE-BP1); the lower is a heterodimer of jun/ATF2. LPS induces c-jun and thus may enhance formation of jun-ATF2 complexes. The simultaneous presence of both complexes may reduce the amount of TNF transcription through competitive binding, while a loss of the upper (ATF2) and/or gain of the lower (jun-ATF2) allow increased transcription. AP-1 elements generally transduce signals involving PKC; the CRE mediates a cAMP response, involving PKA. Thus, this element has the potential of receiving signals through divergent signalling pathways. Our findings also suggest that cAMP-induced inhibition of macrophage functions may occur via down regulation of activation-associated genes through competitive binding of particular cAMP-responsive nuclear protein complexes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insulin receptor transduces insulin's biological signal through the tyrosine kinase present in the receptor's B subunit. The activated insulin receptor kinase then phosphorylates a series of intracellular substrate including insulin receptor substrate 1 (IRS-1), which has been shown to be the pivotal substrate for insulin receptor signal transduction. The phosphorylated tyrosine residues in IRS-1 can bind and activate the downstream effectors, many of which are SH2 domain containing proteins such as phosphotidylinositol 3-kinase, growth factor binding protein 2, and SH2 phosphotyrosine phosphatase 2. Phosphorylated synthetic IRS-1 peptides with the corresponding sequences of the IRS-1 have been shown to associate and activate their respective SH2 domain containing proteins. Another important event happening during insulin binding with the insulin receptor is that the insulin receptor rapidly undergoes internalization. However, the insulin receptor signalling and the receptor endocytosis have been studied as two independent processes. The hypothesis of the present thesis is that the insulin receptor endocytosis is involved in insulin receptor signalling and signal termination. The results of the present investigation demonstrate that insulin receptors in the earliest stage of endocytosis contain significantly greater kinase activity towards IRS-1 peptides than the receptors localized at the plasma membrane, indicating that they are potentially more capable of transducing signals. On the other hand, insulin receptors in the middle and late stage of endocytosis lose their kinase activity, suggesting that insulin receptor kinase activity inactivation and signal termination might take place in the late phase of the insulin receptor internalization. In addition, this study also found that the increased insulin receptor kinase activity in the endosomes is related to the tyrosyl phosphorylation of the specific domains of the receptor's $\beta$ subunit. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA mediated gene transfection is an important tool for moving and isolating genes from one cell type and putting them into a foreign genetic background. DNA transfection studies have been done routinely in many laboratories to identify and isolate transforming sequences in human tumors and tumor cell lines. A second technique, microcell-mediated chromosome transfer, allows the transfer of small numbers of intact human chromosome from one cell to another. This work was done to compare the efficiency of these two techniques in the transformation of NIH 3T3 mouse fibroblast cells.^ My intent in comparing these two techniques was to see if there was a difference in the transforming capability of DNA which has been purified of all associated protein and RNAs, and that of DNA which is introduced into a cell in its native form, the chromosome. If chromosomal sequences were capable of transforming the 3T3 cells in culture, the method could then be used as a way to isolate the relevant tumorigenic chromosomes from human tumors.^ The study shows, however, that even for those cell lines that contain transforming sequences identified by DNA-mediated gene transfer, those same sequences were unable to transform 3T3 cells when introduced to the cells by somatic fusion of human tumor microcells. I believe that the human transforming sequences in their original genetic conformation are not recognized by the mouse cell as genes which should be expressed; therefore, no noticeable transformation event was selected by this technique. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latrepirdine (Dimebon; dimebolin) is a neuroactive compound that was associated with enhanced cognition, neuroprotection and neurogenesis in laboratory animals, and has entered phase II clinical trials for both Alzheimer's disease and Huntington's disease (HD). Based on recent indications that latrepirdine protects cells against cytotoxicity associated with expression of aggregatable neurodegeneration-related proteins, including Aβ42 and γ-synuclein, we sought to determine whether latrepirdine offers protection to Saccharomyces cerevisiae. We utilized separate and parallel expression in yeast of several neurodegeneration-related proteins, including α-synuclein (α-syn), the amyotrophic lateral sclerosis-associated genes TDP43 and FUS, and the HD-associated protein huntingtin with a 103 copy-polyglutamine expansion (HTT gene; htt-103Q). Latrepirdine effects on α-syn clearance and toxicity were also measured following treatment of SH-SY5Y cells or chronic treatment of wild-type mice. Latrepirdine only protected yeast against the cytotoxicity associated with α-syn, and this appeared to occur via induction of autophagy. We further report that latrepirdine stimulated the degradation of α-syn in differentiated SH-SY5Y neurons, and in mouse brain following chronic administration, in parallel with elevation of the levels of markers of autophagic activity. Ongoing experiments will determine the utility of latrepirdine to abrogate α-syn accumulation in transgenic mouse models of α-syn neuropathology. We propose that latrepirdine may represent a novel scaffold for discovery of robust pro-autophagic/anti-neurodegeneration compounds, which might yield clinical benefit for synucleinopathies including Parkinson's disease, Lewy body dementia, rapid eye movement (REM) sleep disorder and/or multiple system atrophy, following optimization of its pro-autophagic and pro-neurogenic activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have demonstrated that most humans infected with Echinococcus spp. exhibit resistance to disease. When infection leads to disease, the parasite is partially controlled by host immunity: in case of immunocompetence, the normal alveolar echinococcosis (AE) or cystic echinococcosis (CE) situation, the metacestode grows slowly, and first clinical signs appear years after infection; in case of impaired immunity (AIDS; other immunodeficiencies), uncontrolled proliferation of the metacestode leads to rapidly progressing disease. Assessing Echinococcus multilocularis viability in vivo following therapeutic interventions in AE patients may be of tremendous benefit when compared with the invasive procedures used to perform biopsies. Current options are F18-fluorodeoxyglucose-positron emission tomography (FDG-PET), which visualizes periparasitic inflammation due to the metabolic activity of the metacestode, and measurement of antibodies against recEm18, a viability-associated protein, that rapidly regresses upon metacestode inactivation. For Echinococcus granulosus, similar prognosis-associated follow-up parameters are still lacking but a few candidates may be listed. Other possible markers include functional and diffusion-weighted Magnetic Resonance Imaging (MRI), and measurement of products from the parasite (circulating antigens or DNA), and from the host (inflammation markers, cytokines, or chemokines). Even though some of them have been promising in pilot studies, none has been properly validated in an appropriate number of patients until now to be recommended for further use in clinical settings. There is therefore still a need to develop reliable tools for improved viability assessment to provide the sufficient information needed to reliably withdraw anti-parasite benzimidazole chemotherapy, and a basis for the development of new alternative therapeutic tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED Altered arterial stiffness is a recognized risk factor of poor cardiovascular health. Chronic inflammation may increase arterial stiffness. We tested whether arterial stiffness is increased children with asthma, a chronic disease characterized by fluctuating airway and systemic inflammation. Arterial stiffness, expressed as carotid-femoral pulse wave velocity (PWVcf), was measured in 37 mild-to-moderate asthmatic children: 11 girls, median (range) age 11.1 years (6-15). PWVcf in asthma was compared to PWVcf in 65 healthy controls matched for age, height, and gender previously studied in Germany and was correlated with airway inflammation and obstruction. PWVcf was higher in asthmatic children compared to controls: PWVcf median (interquartile range) was 4.7 m/s (4.5-4.9) vs. 4.3 m/s (4.1-4.7), p < 0.0001. In asthmatic children, PWVcf was inversely associated (r (2) = 0.20, p = 0.004) with forced expiratory volume in 1 s (FEV1). This association remained significant after adjusting for possible confounders including body mass index, blood pressure, steroid use, and FeNO. CONCLUSION Arterial stiffness is increased in children with mild-to-moderate asthma. The association between impaired lung function and increased arterial stiffness suggests that severity of disease translates into detrimental effects on the cardiovascular system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The storage of translationally inactive mRNAs in cytosolic granules enables cells to react flexibly to environmental changes. In eukaryotes, Scd6 (suppressor of clathrin deficiency 6)/Rap55 (RNA-associated protein 55), a member of the LSm14 (like-Sm14) family, is an important factor in the formation and activity of P-bodies, where mRNA decay factors accumulate, in stress granules that store mRNAs under adverse conditions and in granules that store developmentally regulated mRNAs. SCD6 from Trypanosoma brucei (TbSCD6) shares the same domain architecture as orthologous proteins in other organisms and is also present in cytosolic granules (equivalent to P-bodies). We show that TbSCD6 is a general repressor of translation and that its depletion by RNAi results in a global increase in protein synthesis. With few exceptions, the steady-state levels of proteins are unchanged. TbSCD6 is not required for the formation of starvation-induced granules in trypanosomes, and unlike Scd6 from yeast, Plasmodium and all multicellular organisms analysed to date, it does not form a complex with the helicase Dhh1 (DExD/H-box helicase 1). In common with Xenopus laevis RAP55, TbSCD6 co-purifies with two arginine methyltransferases; moreover, TbSCD6 itself is methylated on three arginine residues. Finally, a detailed analysis identified roles for the Lsm and N-rich domains in both protein localization and tr

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Dysregulation of the coagulation system due to inflammatory responses and cross-species molecular incompatibilities represents a major obstacle to successful xenotransplantation. We hypothesized that complement inhibition mediated by transgenic expression of human CD46 in pigs might also regulate the coagulation and fibrinolysis cascades and tested this in ex vivo human-to-pig xenoperfusions. METHODS Forelimbs of wild-type and hCD46/HLA-E double transgenic pigs were ex vivo xenoperfused for 12 hours with whole heparinized human blood. Muscle biopsies were stained for galactose-α1,3-galactose, immunoglobulin M, immunoglobulin G, complement, fibrin, tissue factor, fibrinogen-like protein 2, tissue plasminogen activator (tPA), and plasminogen activator inhibitor (PAI)-1. The PAI-1/tPA complexes, D-dimers, and prothrombin fragment F1 + 2 were measured in plasma samples after ex vivo xenoperfusion. RESULTS No differences of galactose expression or deposition of immunoglobulin M and immunoglobulin G were found in xenoperfused tissues of wild type and transgenic limbs. In contrast, significantly lower deposition of C5b-9 (P < 0.0001), fibrin (P = 0.009), and diminished expression of tissue factor (P = 0.005) and fibrinogen-like protein 2 (P = 0.028) were found in xenoperfused tissues of transgenic limbs. Levels of prothrombin fragment F1 + 2 (P = 0.031) and D-dimers (P = 0.044) were significantly lower in plasma samples obtained from transgenic as compared to wild-type pig limb perfusions. The expression of the fibrinolytic marker tPA was significantly higher (P = 0.009), whereas PAI-1 expression (P = 0.022) and PAI-1/tPA complexes in plasma (P = 0.015) were lower after transgenic xenoperfusion as compared to wild-type xenoperfusions. CONCLUSIONS In this human-to-pig xenoperfusion model, complement inhibition by transgenic hCD46 expression led to a significant inhibition of procoagulant and antifibrinolytic pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regulation of microtubule dynamics is attributed to microtubule-associated proteins that bind to the microtubule outer surface, but little is known about cellular components that may associate with the internal side of microtubules. We used cryoelectron tomography to investigate in a quantitative manner the three dimensional structure of microtubules in intact mammalian cells. We show that the lumen of microtubules in this native state is filled with discrete, globular particles with a diameter of 7 nm and spacings between 8 and 20 nm in neuronal cells. Cross-sectional views of microtubules confirm the presence of luminal material in vitreous sections of brain tissue. Most of the luminal particles had connections to the microtubule wall, as revealed in tomograms. A higher accumulation of particles was seen near the retracting plus ends of microtubules. The luminal particles were abundant in neurons, but were also observed in other cells, such as astrocytes and stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Antiseptic solutions are commonly used in dentistry for a number of sterilization procedures, including harvesting of bone chips, irrigation of extraction sockets, and sterilization of osteonecrotic bone. Despite its widespread use, little information is available regarding the effects of various antiseptic solutions on bone cell viability, morphology, and the release of growth factors. MATERIALS AND METHODS The antiseptic solutions included 1) 0.5% povidone iodine (PI), 2) 0.2% chlorhexidine diguluconate (CHX), 3) 1% hydrogen peroxide (H2O2), and 4) 0.25% sodium hypochlorite (HYP). Bone samples collected from porcine mandibular cortical bone were rinsed in the antiseptic solutions for 10 minutes and assessed for cell viability using an MTS assay and protein release of transforming growth factor (TGF-β1), bone morphogenetic protein 2 (BMP2), vascular endothelial growth factor (VEGF), interleukin (IL)-1β, and receptor activator of nuclear factor κB ligand (RANKL) using an enzyme-linked immunosorbent assay at 15 minutes and 4 hours after rinsing. RESULTS After antiseptic rinsing, changes to the surface protein content showed marked alterations, with an abundant protein layer remaining on CHX-rinsed bone samples. The amount of surface protein content gradually decreased in the following order: CHX, H2O2, PI, and HYP. A similar trend was also observed for the relative cell viability from within bone samples after rinsing, with up to 6 times more viable cells found in the CHX-rinsed bone samples than in the HYP- and PI-rinsed samples. An analysis of the growth factors found that both HYP and PI had significantly lower VEGF and TGF-β1 protein release from bone samples at 15 minutes and 4 hours after rinsing compared with CHX and H2O2. A similar trend was observed for RANKL and IL-1β protein release, although no change was observed for BMP2. CONCLUSIONS The results from the present study have demonstrated that antiseptic solutions present with very different effects on bone samples after 10 minutes of rinsing. Rinsing with CHX maintained significantly higher cell viability and protein release of growth factors potent to the bone remodeling cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro engineered tissues which recapitulate functional and morphological properties of bone marrow and bone tissue will be desirable to study bone regeneration under fully controlled conditions. Among the key players in the initial phase of bone regeneration are mesenchymal stem cells (MSCs) and endothelial cells (ECs) that are in close contact in many tissues. Additionally, the generation of tissue constructs for in vivo transplantations has included the use of ECs since insufficient vascularization is one of the bottlenecks in (bone) tissue engineering. Here, 3D cocultures of human bone marrow derived MSCs (hBM-MSCs) and human umbilical vein endothelial cells (HUVECs) in synthetic biomimetic poly(ethylene glycol) (PEG)-based matrices are directed toward vascularized bone mimicking tissue constructs. In this environment, bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2) promotes the formation of vascular networks. However, while osteogenic differentiation is achieved with BMP-2, the treatment with FGF-2 suppressed osteogenic differentiation. Thus, this study shows that cocultures of hBM-MSCs and HUVECs in biological inert PEG matrices can be directed toward bone and bone marrow-like 3D tissue constructs.