993 resultados para Microscopia Confocal
Resumo:
Angiotensin II (Ang II) is one of the most potent vasoconstrictors. We document here the innervation of rat and human mesenteric resistance arteries (MRA) by angiotensinergic neurons of the rat and human sympathetic coeliac ganglia. Angiotensinogen (Ang-N)-mRNA and angiotensin converting enzyme-mRNA but no renin-mRNA were detected by using quantitative real time polymerase chain reaction in total RNA extracts of rat coeliac ganglia. In the same extracts, cathepsin D-mRNA was detected: This protease also cleaves Ang I from Ang-N and could therefore account for the generation of neuronal Ang peptides in the absence of renin. In situ hybridization confirmed the presence of Ang-N-mRNA in the cytoplasm of rat coeliac ganglia. By using solid-phase extraction, high performance liquid chromatography and subsequent radioimmunoassay, Ang II and its metabolites were detected in rat and also in human coeliac ganglia. Immunoreactivity for Ang II was demonstrated in rat and human coeliac ganglia neurons and their projections innervating MRA. In addition, segmental angiotensinergic innervation of MRA was also observed. By means of confocal laser scanning microscopy we were able to demonstrate the presence of angiotensinergic synapses en passant along side of vascular smooth muscle cells. Our findings could indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglia and may act as an endogenous neurotransmitter locally in MRA.
Resumo:
Camallanus tridentatus is redescribed on the basis of the examination of specimens obtained from the stomach, caeca and intestine of the naturally infected arapaima Arapaima gigas (Schinz) from the Mexiana Island, Amazon River Delta, Brazil. Data on the surface morphology of adults inferred from confocal laser scanning and scanning electron microscopical observations are also provided. The study revealed some taxonomically important, previously unreported morphological features in this species, such as the presence of the poorly sclerotized left spicule and deirids. C. tridentatus distinctly differs from other congeneric species parasitizing freshwater fishes in South America mainly in the structure of the buccal capsule and the female caudal end. C. maculatus Martins, Garcia, Piazza and Ghiraldelli is considered a junior synonymm of Camallanus cotti Fujita.
Resumo:
The purpose of this work was to acquire an overview of the infectious cycle of HAdV-41 in permissive HEK 293 cells and compare it to that observed with the prototype of the genus, Human adenovirus C HAdV-2. HEK 293 cells were infected with each virus separately and were harvested every 12 h for seven days. Infection kinetics were analysed using confocal and electronic microscopy. The results show that, when properly cultivated, HAdV-41 was not fastidious. It had a longer multiplication cycle, which resulted in the release of complete viral particles and viral stocks reached high titres. After 60 h of infection, the export of viral proteins from the infected cell to the extracellular milieu was observed, with a pattern similar to that previously described for HAdV-2 penton-base trafficking after 30 h of infection. HAdV-41 had a non-lytic cycle and the infection spread from the first infected cell to its neighbours. The release process of the viral particles is unknown. The results observed for HAdV-41 infection in HEK 293 cells show how different this virus is from the prototype HAdV-2 and provides information for the development of this vector for use in gene therapy.
Resumo:
Monocytes/macrophages are important targets for dengue virus (DENV) replication; they induce inflammatory mediators and are sources of viral dissemination in the initial phase of the disease. Apoptosis is an active process of cellular destruction genetically regulated, in which a complex enzymatic pathway is activated and may be trigged by many viral infections. Since the mechanisms of apoptotic induction in DENV-infected target cells are not yet defined, we investigated the virus-cell interaction using a model of primary human monocyte infection with DENV-2 with the aim of identifying apoptotic markers. Cultures analyzed by flow cytometry and confocal microscopy yielded DENV antigen positive cells with rates that peaked at the second day post infection (p.i.), decayed afterwards and produced the apoptosis-related cytokines TNF-α and IL-10. Phosphatidylserine, an early marker for apoptosis, was increased at the cell surface and the Fas death receptor was upregulated at the second day p.i. at significantly higher rates in DENV infected cell cultures than controls. However, no detectable changes were observed in the expression of the anti-apoptotic protein Bcl-2 in infected cultures. Our data support virus modulation of extrinsic apoptotic factors in the in vitro model of human monocyte DENV-2 infection. DENV may be interfering in activation and death mechanisms by inducing apoptosis in target cells.
Resumo:
L’objectiu d’aquest projecte és fer un estudi preliminar sobre la viabilitat decaracteritzar la qualitat i composició de les xocolates per difracció de raigs-X (DRX),termogravimetria (TG), calorimetria diferencial de rastreig (DSC) i microscopia òptica(MO). Així mateix, es volen establir els protocols i paràmetres per l’anàlisi sistemàticade les xocolates
Resumo:
A peptide (SmB2LJ; r175-194) that belongs to a conserved domain from Schistosoma mansoni SmATPDase 2 and is shared with potato apyrase, as predicted by in silico analysis as antigenic, was synthesised and its immunostimulatory property was analysed. When inoculated in BALB/c mice, this peptide induced high levels of SmB2LJ-specific IgG1 and IgG2a subtypes, as detected by enzyme linked immunosorbent assay. In addition, dot blots were found to be positive for immune sera against potato apyrase and SmB2LJ. These results suggest that the conserved domain r175-194 from the S. mansoni SmATPDase 2 is antigenic. Western blots were performed and the anti-SmB2LJ antibody recognised in adult worm (soluble worm antigen preparation) or soluble egg antigen antigenic preparations two bands of approximately 63 and 55 kDa, molecular masses similar to those predicted for adult worm SmATPDase 2. This finding strongly suggests the expression of this same isoform in S. mansoni eggs. To assess localisation of SmATPDase 2, confocal fluorescence microscopy was performed using cryostat sections of infected mouse liver and polyclonal antiserum against SmB2LJ. Positive reactions were identified on the external surface from the miracidium in von Lichtenberg's envelope and, in the outer side of the egg-shell, showing that this soluble isoform is secreted from the S. mansoni eggs.
Resumo:
El càncer de pell es considera un dels tipus de càncer més freqüents actualment, entre d'altres factors degut a l'augment en l'exposició a la radiació ultraviolada (UV). Recentment la utilització de la Microscòpia Confocal (MCF) per a l'avaluació i diagnosi del càncer de pell ha rebut un important interès. El principal avantatge és la capacitat de visualitzar en temps real la regió d'interès a nivell cel·lular, similar a la informació obtinguda en una biòpsia, sense el patiment que suposa per al pacient. El principal inconvenient però, és que les imatges obtingudes amb MCF són difícils d'interpretar per als metges en el format actual (conjunt de talls 2D a diferents profunditats de la pell).El microscopi confocal és una de les tècniques més actuals de diagnòstic, i s'ha establert com a una eina per obtenir imatges d'alta resolució i reconstruccions 3-D d'una gran varietat de mostres biològiques. És capaç d'escombrar diferents plans en l'eix Z, obtenint imatges 2D de diferent profunditat juntament amb la informació dels paràmetres de captura (com ara la profunditat, potència del làser, posicionament en x,y,z, etc). Mitjançant eines informàtiques es pot integrar aquesta informació en un model 3D de la regió d'interès. L'objectiu principal d'aquest projecte és el desenvolupament d'una eina per a l'ajuda en la interpretació de les imatges MCF i així poder millorar el diagnosi del càncer de pell
Resumo:
The antennal lobe is the primary olfactory center in the insect brain and represents the anatomical and functional equivalent of the vertebrate olfactory bulb. Olfactory information in the external world is transmitted to the antennal lobe by olfactory sensory neurons (OSNs), which segregate to distinct regions of neuropil called glomeruli according to the specific olfactory receptor they express. Here, OSN axons synapse with both local interneurons (LNs), whose processes can innervate many different glomeruli, and projection neurons (PNs), which convey olfactory information to higher olfactory brain regions. Optical imaging of the activity of OSNs, LNs and PNs in the antennal lobe - traditionally using synthetic calcium indicators (e.g. calcium green, FURA-2) or voltage-sensitive dyes (e.g. RH414) - has long been an important technique to understand how olfactory stimuli are represented as spatial and temporal patterns of glomerular activity in many species of insects. Development of genetically-encoded neural activity reporters, such as the fluorescent calcium indicators G-CaMP and Cameleon, the bioluminescent calcium indicator GFP-aequorin, or a reporter of synaptic transmission, synapto-pHluorin has made the olfactory system of the fruitfly, Drosophila melanogaster, particularly accessible to neurophysiological imaging, complementing its comprehensively-described molecular, electrophysiological and neuroanatomical properties. These reporters can be selectively expressed via binary transcriptional control systems (e.g. GAL4/UAS, LexA/LexAop, Q system) in defined populations of neurons within the olfactory circuitry to dissect with high spatial and temporal resolution how odor-evoked neural activity is represented, modulated and transformed. Here we describe the preparation and analysis methods to measure odor-evoked responses in the Drosophila antennal lobe using G-CaMP. The animal preparation is minimally invasive and can be adapted to imaging using wide-field fluorescence, confocal and two-photon microscopes.
Resumo:
The vectorial capacity of Aedes aegypti is directly influenced by its high reproductive output. Nevertheless, females are restricted to a single mating event, sufficient to acquire enough sperm to fertilize a lifetime supply of eggs. How Ae. aegypti is able to maintain viable spermatozoa remains a mystery. Male spermatozoa are stored within either of two spermathecae that in Ae. aegypti consist of one large and two smaller organs each. In addition, each organ is divided into reservoir, duct and glandular portions. Many aspects of the morphology of the spermatheca in virgin and inseminated Ae. aegypti were investigated here using a combination of light, confocal, electron and scanning microscopes, as well as histochemistry. The abundance of mitochondria and microvilli in spermathecal gland cells is suggestive of a secretory role and results obtained from periodic acid Schiff assays of cell apexes and lumens indicate that gland cells produce and secrete neutral polysaccharides probably related to maintenance of spermatozoa. These new data contribute to our understanding of gamete maintenance in the spermathecae of Ae. aegypti and to an improved general understanding of mosquito reproductive biology.
Resumo:
An increased plasma concentration of von Willebrand factor (vWF) is detected in individuals with many infectious diseases and is accepted as a marker of endothelium activation and prothrombotic condition. To determine whether ExoU, a Pseudomonas aeruginosa cytotoxin with proinflammatory activity, enhances the release of vWF, microvascular endothelial cells were infected with the ExoU-producing PA103 P. aeruginosa strain or an exoU-deficient mutant. Significantly increased vWF concentrations were detected in conditioned medium and subendothelial extracellular matrix from cultures infected with the wild-type bacteria, as determined by enzyme-linked immunoassays. PA103-infected cells also released higher concentrations of procoagulant microparticles containing increased amounts of membrane-associated vWF, as determined by flow cytometric analyses of cell culture supernatants. Both flow cytometry and confocal microscopy showed that increased amounts of vWF were associated with cytoplasmic membranes from cells infected with the ExoU-producing bacteria. PA103-infected cultures exposed to platelet suspensions exhibited increased percentages of cells with platelet adhesion. Because no modulation of the vWF mRNA levels was detected by reverse transcription-polymerase chain reaction assays in PA103-infected cells, ExoU is likely to have induced the release of vWF from cytoplasmic stores rather than vWF gene transcription. Such release is likely to modify the thromboresistance of microvascular endothelial cells.
Resumo:
Growing evidence suggests that the bacterium Waddlia chondrophila, a novel member of the Chlamydiales order, is an agent of miscarriage in humans and abortion in ruminants. We thus investigated the permissivity of three epithelial cell lines, primate Vero kidney cells, human A549 pneumocytes and human Ishikawa endometrial cells to this strict intracellular bacteria. Bacterial growth kinetics in these cell lines was assessed by quantitative PCR and immunofluorescence and our results demonstrated that W. chondrophila enters and efficiently multiplies in these epithelial cell lines. Additionally, confocal and electron microscopy indicated that the bacteria co-localize with host cell mitochondria. Within Vero and A549 cells, intracellular growth of W. chondrophila was associated with a significant decrease in host cell viability while no such cytophatic effect was detected in Ishikawa cells. Bacterial cell growth in this endometrial cell line stopped 48 h after infection. This stop in the replication of W. chondrophila coincided with the appearance of large aberrant bodies, a form of the bacteria also observed in Chlamydiaceae and associated with persistence. This persistent state of W. chondrophila may explain recurrent episodes of miscarriage in vivo, since the bacteria might reactivate within endometrial cells following hormonal changes that occur during pregnancy.
Resumo:
Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of heart failure. We investigated modifications in the cellular electrophysiological and calcium-handling characteristics of an infected mouse heart during the chronic phase of the disease. The patch-clamp technique was used to record action potentials (APs) and L-type Ca2+ and transient outward K+ currents. [Ca2+]i changes were determined using confocal microscopy. Infected ventricular cells showed prolonged APs, reduced transient outward K+ and L-type Ca2+ currents and reduced Ca2+ release from the sarcoplasmic reticulum. Thus, the chronic phase of Chagas disease is characterised by cardiomyocyte dysfunction, which could lead to heart failure.
Resumo:
Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.
Resumo:
Gut mesodermal tissues originate from the splanchnopleural mesenchyme. However, the embryonic gastrointestinal coelomic epithelium gives rise to mesenchymal cells, whose significance and fate are little known. Our aim was to investigate the contribution of coelomic epithelium-derived cells to the intestinal development. We have used the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1(cre)) crossed with the Rosa26R-EYFP reporter mouse. In the gastrointestinal duct Wt1, the Wilms' tumor suppressor gene, is specific and dynamically expressed in the coelomic epithelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP) allowing for colocalization with differentiation markers through confocal microscopy and flow cytometry. Wt1(cre-YFP) cells were very abundant throughout the intestine during midgestation, declining in neonates. Wt1(cre-YFP) cells were also transiently observed within the mucosa, being apparently released into the intestinal lumen. YFP was detected in cells contributing to intestinal vascularization (endothelium, pericytes and smooth muscle), visceral musculature (circular, longitudinal and submucosal) as well as in Cajal and Cajal-like interstitial cells. Wt1(cre-YFP) mesenchymal cells expressed FGF9, a critical growth factor for intestinal development, as well as PDGFRα, mainly within developing villi. Thus, a cell population derived from the coelomic epithelium incorporates to the gut mesenchyme and contribute to a variety of intestinal tissues, probably playing also a signaling role. Our results support the origin of interstitial cells of Cajal and visceral circular muscle from a common progenitor expressing anoctamin-1 and SMCα-actin. Coelomic-derived cells contribute to the differentiation of at least a part of the interstitial cells of Cajal.
Resumo:
Contraction forces developed by cardiomyocytes are transmitted across the plasma membrane through end-to-end connections between the myocytes, called intercalated disks, which enable the coordinated contraction of heart muscle. A component of the intercalated disk, the adherens junction, consists of the cell adhesion molecule, N-cadherin. Embryos lacking N-cadherin die at mid-gestation from cardiovascular abnormalities. We have evaluated the role of N-cadherin in cardiomyogenesis using N-cadherin-null mouse embryonic stem (ES) cells grown as embryoid bodies (EBs) in vitro. Myofibrillogenesis, the spatial orientation of myofibers, and intercellular contacts including desmosomes were normal in N-cadherin-null ES cell-derived cardiomyocytes. The effect of retinoic acid (RA), a stage and dose-dependent cardiogenic factor, was assessed in differentiating ES cells. all-trans (at) RA increased the number of ES cell-derived cardiomyocytes by approximately 3-fold (at 3 x 10(-9) M) in wt EBs. However, this effect was lost in N-cadherin-null EBs. In the presence of supplemented at-RA, the emergence of spontaneously beating cardiomyocytes appeared to be delayed and slightly less efficient in N-cadherin-null compared with wt and heterozygous EBs (frequencies of EBs with beating activity at 5 days: 54+/-18% vs. 96+/-0.5%, and 93+/-7%, respectively; peak frequencies of EBs with beating activity: 83+/-8% vs. 96+/-0.5% and 100%, respectively). In conclusion, cardiomyoyctes differentiating from N-cadherin-null ES cells in vitro show normal myofibrillogenesis and intercellular contacts, but impaired responses to early cardiogenic effects mediated by at-RA. These results suggest that N-cadherin may be essential for RA-induced cardiomyogenesis in mouse ES cells in vitro.