770 resultados para Mentha arvensis
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2013, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2008, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers.
Resumo:
This data set contains aboveground community biomass in 2009 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2009 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in three rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for all biomass measures are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
This data set contains aboveground community biomass in 2010 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Aboveground community biomass was harvested twice in 2010 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the main experiment. This was done by clipping the vegetation at 3 cm above ground in two rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. the central 10 x 15 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for all biomass measures are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2002, vegetation cover was estimated only once in Septemper just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2002, cover on the community level was only estimated for the sown plant community, weed plant community and bare soil. In contrast to later years, cover of dead plant material was not estimated.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2003, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2003, cover on the community level was only estimated for the sown plant community, weed plant community and bare soil. In contrast to later years, cover of dead plant material was not estimated.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2005, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2005, dead plant material was found only in a few plots. Therefore, cover of dead plant material is zero for most of the 82 plots.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2006, vegetation cover was estimated twice in June and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2006, dead plant material was found only in a few plots. Therefore, cover of dead plant material is zero for most of the 82 plots.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2007, vegetation cover was estimated twice in June and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2007, dead plant material was found only in a few plots. Therefore, cover of dead plant material is zero for most of the 82 plots.
Resumo:
This data set contains information on vegetation cover, i.e. the proportion of soil surface area that is covered by different categories of plants per estimated plot area. Data was collected on the plant community level (sown plant community, weed plant community, dead plant material, and bare ground) and on the level of individual plant species in case of the sown species. Data presented here is from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2004, vegetation cover was estimated twice in May and August just prior to mowing (during peak standing biomass) on all experimental plots of the Main Experiment. Cover was visually estimated in a central area of each plot 3 by 3 m in size (approximately 9 m²) using a decimal scale (Londo). Cover estimates for the individual species (and for target species + weeds + bare ground) can add up to more than 100% because the estimated categories represented a structure with potentially overlapping multiple layers. In 2004, cover on the community level was only estimated for the sown plant community, weed plant community and bare soil. In contrast to later years, cover of dead plant material was not estimated.
Resumo:
As a result of a floristic survey carried out in riparian habitats of northern Spain, new chorological data are provided for 9 alien and 6 native plant species. Some species are reported for the first time at regional scale, such as Carex strigosa, Helianthus x laetiflorus and Persicaria pensylvanica in Cantabria. Also noteworthy is the finding of naturalised populations of the North American grass Muhlenbergia schreberi at the Urumea river basin, which represents the second reference for the Iberian Peninsula.
Resumo:
Wydział Biologii
Resumo:
The competitiveness in the rural sector and the need to make viable and sustainable property, direct the farmer to seek new production strategies. In this sense, the book Techniques of sustainable agricultural management has as objective contributed information on concepts, management practices, technological innovations, which are applicable in the agricultural production. The same is composed of 13 chapters, topics covered in aquaculture production, management and dairy production, as general aspects of hematology fish; dynamics of decision-making and adaptive flow dairy production systems; importance of performance measures and body biometrics in small ruminants; milk production in beef cows; parasitism in beef cattle; performance of dairy cows in production; efficiency of cross beef cattle in finishing phase; development of Marchangus: five years; and, bovine growth efficiency. In vegetable production area are addressed matters relating on management and olive cultivation, species of great economic importance and diversification as alternative on the property; functional foods in fruit and vegetables; influence of environmental factors, harvesting and drying in the production and composition of essential oils of Mentha spp; and, implication of the contamination of corn grain by mycotoxins in livestock production. At the end of the book, the expectation of the authors is to have contributed with relevant themes of Brazilian agriculture, which could reflect positively on knowledge, values and quality of available material.
Resumo:
In the present study, natural occurrence of fungi and aflatoxin B1 (AFB1) in pellet feed and feed ingredients used for rainbow trout was investigated with emphasis to Aspergillus section Flavi members and medicinal plants inhibitory to Aspergillus growth and/or AF production. The feed samples were cultured on the standard isolation media including dichloran rosebengal chloramphenicol agar (DRCA) and Aspergillus flavus/parasiticus agar (AFPA) for 2 weeks at 28 °C. Identification of fungal isolates was implemented based on the macro- and microscopic morphological criteria. AFs were detected using high performance liquid chromatography (HPLC). Based on the results obtained, a total of 109 fungal isolates were identified of which Aspergillus was the prominent genus (57.0%), followed by Penicillium (12.84%), Absidia (11.01%) and Pseudallscheria (10.10%). The most frequent Aspergillus species was A. flavus (60.66%) isolated from all the feed ingredients as well as pellet feed. Among 37 A. flavus isolates, 19 (51.35%) were able to produce AFB1 on yeast extract-sucrose (YES) broth in the range of 10.2 to 612.8 [tg/g fungal dry weight. HPLC analyses of trout feed showed that pellet feed and all feed ingredients tested except gluten were contaminated with different levels of AFB1 in the range of 1.83 to 67.35 lig/kg. In order to finding natural inhibitors of fungal growth and/or AF production, essential oils (EOs) and extracts of 49 medicinal plants were studied against an aflatoxin-producing A. parasiticus using a microbioassay technique. The EOs was analyzed by gas chromatography/mass spectrometry (GC/MS). Based on the results obtained, Achillea millefolium sub sp. elborsensis, Ferula gummosa, Mentha spicata, Azadirachta indica, Conium maculatum and Artemisia dracunculus remarkably inhibited A. parasiticus growth without affecting AF production by the fungus. Besides of Thymus vulgaris and Citrus aurantifolia, the EO of Foeniculum vulgare significantly inhibited both fungal growth (-70.0%) and AFs B1 and G1 (-99.0%) production. The EO of Carum carvi and ethyl acetate extract of Platycladus orientalis suppressed AFs B1 and G1 by more than 90.0%, without any obvious effect on fungal growth. The IC50 values of bioactive plants for AFs B1 and G1 were determined in the ranges of 90.6 to 576.2 and 2.8 to 61.9 µg/ml, respectively. Overall, results of the present study indicate the importance of AF contamination of trout feed as a risk factor for fish farming and thus, an urgent necessity for constant monitoring of trout feed for any unacceptable levels of AF contamination. Likewise, antifungal activities of bioactive plants introduced here would be an important contribution to explain the use of these plants as effective antimicrobial candidates to protect feeds from toxigenic fungus growth and subsequent AF contamination.
Resumo:
Irradiation is being progressively considered as a versatile and effective conservation technique [1]. Based on this premise, our research group has been investigating the effects of different irradiation conditions in several food matrices. Aromatic plants are among the food products that require suitable conservation technologies to expand their use [2]. The effects of irradiation on the four species (Aloysia citrodora, Melissa officinalis, Melittis melissophyllum and Mentha piperita) studied herein were previously evaluated. In the present study, the same species were treated with different doses of electron-beam irradiation (0, 1 and 10 kGy) and several parameters were evaluated. The individual sugars profile was determined by HPLCRI, fatty acids by GC-FID, organic acids by HPLC-PDA and tocopherols by HPLCfluorescence. In general, the evaluated parameters remained practically unchanged, regardless of plant species or the irradiation dose. Regarding the profile of sugars, the major change was a decrease in the content of disaccharides. The most notable variations in organic acids were observed in plant species with the highest content in these molecules, especially the decrease observed in the samples of M. officinalis and M. melissophyllum. Among the tocopherols, the α and β isoforms were more susceptible to radiation, while the application of 1 kGy tended to increase the levels of tocopherols in Aloysia citrodora, while 10 kGy had the same effect on M. melissophyllum. M. piperita sample showed the highest levels of tocopherols, regardless of the dose applied. Finally, with regard to the fatty acids content, the irradiated samples showed higher percentages of monounsaturated fatty acids than the control samples. In general, analyzing the results taking into account the effects described, it can be concluded that the application of irradiation with electron beam at doses 1 and 10 kGy is an effective way to retain biomolecules profile of the studied species.